Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород молекулярные орбиты

    Подход, основанный на.молекулярных орбитах. Мы видели (стр. 294), что если использовать при построении волновой функции водорода (молекулярной орбиты) простые молекулярные Ьсг-орбиты в виде ЛКАО типа уравнения (Б-1) [c.340]

    Молекулярные орбитали Н2О образуются за счет 2s-, и 2р-орбиталей атома кислорода и ls-орбиталей двух атомов водорода. Характер перекрывания этих орбиталей показан на рис. 147. [c.312]

Рис. 12-3. Молекулярные орбитали как линейные комбинации (сумма и разность) атомных орбиталей. Если обозначить волновую функцию 1 -состояния атома водорода просто как Is, соответствующая этому состоянию функция электронной плотности запишется как [Is] . Аналогично функция электронной плотности для молекулярной орбитали, полученной суммированием атомных орбиталей, записывается как [Is + Is ] , где Is и Рис. 12-3. Молекулярные орбитали как линейные комбинации (сумма и разность) атомных орбиталей. Если обозначить волновую функцию 1 -состояния атома водорода просто как Is, соответствующая этому состоянию функция электронной плотности запишется как [Is] . Аналогично функция электронной плотности для молекулярной орбитали, полученной суммированием атомных орбиталей, записывается как [Is + Is ] , где Is и

    Воспользуемся уже знакомым нам принципом заполнения Паули, чтобы объяснить возможность существования молекул Н2, Н2, Не и Не2. Молекулярный ион водорода Н2 имеет два ядра (протона), но всего один электрон. По соображениям Паули, этот электрон должен находиться на молекулярной орбитали с самой низкой энергией, а согласно рис. [c.517]

    На рис. 12-3, а показаны профильные сечения облаков электронной плотности для двух атомов водорода, и [15 ] , а также профильное сечение облака электронной плотности для связывающей молекулярной орбитали, [15 + Ьь] . Как выглядят профильные сечения двух атомных волновых функций, 15 и Изобразите профильные сечения разрыхляющей молекулярной волновой функции, 1х — а также соответствующего ей облака электронной плотности, [15 — 15 ] . [c.545]

    Нейтральная двухатомная молекула ОН наблюдается в космическом пространстве. Опишите ее электронное строение в рамках теории молекулярных орбиталей, принимая во внимание только 2р-орбитали кислорода и Ь-орбиталь водорода. На молекулярной орбитали какого типа находится неспаренный электрон в молекуле ОН Распределена ли эта орбиталь по атомам кислорода и водорода или же она локализована только на одном из этих атомов Если локализована, то на каком атоме  [c.548]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]

    Как и в методе ВС здесь учитывается значение параллельности или антипараллельности спинов электронов данной пары. Энергия молекулярной орбиты, образованной электронами с антипараллельными спинами меньше, чем энергия соответствующих орбит в атомах. Образование ее из соответствующих атомных орбит сопровождается выделением энергии. Такую орбиту называют Связывающей. Энергия связи электрона такой орбиты в молекуле выше, чем энергия связи его в атоме. Так, потенциал ионизации атома водорода равен 13,5 в, а молекулы На 15 0. [c.68]

    Рассмотрим, как строятся многоцентровые МО и как они преобразуются в эквивалентные локализованные двухцентровые молекулярные орбитали (ЛМО). В качестве наиболее простого примера рассмотрим трехатомную молекулу Н2О. Поместим атом кислорода в центре декартовой системы координат, атомы водорода в плоскости гоу (рис. 37). Построим сначала делокализованные МО. Эти орбита- [c.94]

    Если рассматривать процесс сближения атомов, то из этих данных можно заключить, что энергетически более выгодным.будет процесс переноса электрона с лития на водород. При равновесных расстояниях о переносе заряда можно судить по значению дипольного момента. Простейший вид молекулярной орбитали симметрии а, являющейся линейной комбинацией атомных орбиталей (МО ЛКАО) - орбиталь вида [c.220]

    На рис. 59 приведена энергетическая диаграмма орбиталей молекулы аммиака. Из семи исходных атомных орбиталей (25-, 2ру-и 2 рг-орбиталей азота и 15-орбиталей трех атомов водорода) возникает семь молекулярных орбита- [c.101]


    Теперь, используя метод молекулярных орбиталей, составим волновую функцию молекулы водорода. Для связывающей молекулярной орбитали двух электронов (коэффициент нормирования при этом опускается) запишем функцию грв и по тем же соображениям, что и при решении по Гейтлеру — Лондону, составим произведение [c.87]

    Переход электронов с атомных 15-орбиталей на связывающую МО, приводящий к возникновению химической связи, сопровождается выделением энергии. Напротив, переход электронов с атомных 15-орбиталей на разрыхляющую МО требует затраты энергии. Следовательно, энергия электронов на орбитали а ниже, а на орбитали выше, чем на атомных 15-орбиталях. Это соотношение энергии показано на рис. 4.6, на котором представлены как исходные 1з-орбитали двух атомов водорода, так и молекулярные орбитали (71 и Приближенно можно считать, что при переходе 15-электрона на связывающую МО выделяется столько же энергии, сколько необходимо затратить для его перевода на разрыхляющую МО. [c.108]

    Таким образом, причина возникновения притяжения между двумя атомами водорода сводится к тому, что вследствие квантово-механического принципа суперпозиции электроны переходят с атомных на энергетически более выгодные молекулярные орбиты. Отталкивание, отвечающее состоянию и , — типичное явление, имеющее весьма большое значение в атомных процессах. Именно оно определяет свойство насыщаемости связи, энергию активации, размеры молекул и пр. [c.473]

    Рассмотрим наиболее простой случай такого взаимодействия для двух атомов водорода, находящихся на столь больших расстояниях, что электроны остаются в атомных состояниях и не переходят на молекулярные орбиты. В каждом атоме центр тяжести отрицательного заряда совпадает с центром тяжести положительного (ядром). Таким образом, атомы не имеют дипольных моментов. Однако в каждый данный момент времени атомы обладают мгновенным дипольным моментом. Система будет обладать более низкой энергией, если эти моменты будут ориентированы в пространстве определенным образом. Так, если в одном атоме электрон находится слева от [c.487]

    При образовании молекулярной орбитали взаимно комбинироваться могут не любые пары электронов атомов, а лишь близкие по своему энергетическому состоянию они обязательно должны находиться на одном и том же квантовом уровне (п). Например, в двух атомах водорода Ь-электроны (п=1) могут образовать молекулярную орбиталь. Для этого необходимо максимальное перекрывание атомных орбиталей, поэтому важное значение имеет фактор симметрии. Известно, например, что атомные р-орбитали ориентированы в пространстве по осям координат Рх, р, и р . При сближении атомов между собой будут перекрываться только однотипные р-орбитали рх — Рх, Ру — Ру, Р,—рекомбинация атомных орбиталей одинаковых и разных атомов при образовании молекулярной орбитали сопровождается качественным преобразованием атомных орбиталей и всей дискретной молекулярной системы, изменением ее энергетического состояния, что отражается на прочности молекулы. Решающее значение здесь имеет характер распределения электронной плотности между ядрами атомов, образующих молекулу. [c.113]

    То, чго было сказано насчет одноэлектронной связи, полностью относится и к двухэлектронной связи, и мы можем теперь заняться использованием сведений, полученных при рассмотрении молекулярного иона водорода, для углерода, интересующего нас в первую очередь. При этом сразу же обнаруживается важное различие в то время как в водороде молекулярные орбиты образуются в результате перекрывания сферически симметричных 15-ятомпых орбит водорода, пригодные к образованию связи электроны углерода находятся в 2р-состояниях, имеющих аксиальную симметрпю (см. рис. 1). Легко видеть, что в этом случае перекрывание атомных орбит двух атомов углерода зависит не только от расстояния между ядра.ми, но и от относительной ориентации 2р-орбит (рис. 5). [c.30]

    Перекрывание 2р .-орбитали атома кислорода и ls-орбиталей диух атомов водорода приводит к возникновению молекулярных - и aJ P-орбиталей. Как видно из рис. 147, характер перекрывания 2s- и 2р -орбиталей кислорода одинаков. В результате образуются три молекулярные орбитали связываю-1ц.ая Oj , почти несвязывающая и разрыхляющая Орбиталь 2р , [c.312]

    Если провести математические операции, выражаемые словами скомбинируем две атомные орбитали так, чтобы получить разрыхляющую и связывающие молекулярные орбитали , то обнаружится, что две такие атомные орбитали должны обладать достаточно близкими энергиями. В молекуле каждая из двух молекулярных орбиталей содержит 50%-ный вклад от Ь-орбитали каждого атома водорода. В противоположность этому если в молекуле АВ скомбинировать орбиталь атома А, обладающую очень высокой энергией, и орбиталь атома В с довольно низкой энергией, то математические выкладки покажут, что разрыхляющая молекулярная орбиталь представляет собой почти чистую исходную орбиталь атома А, а связывающая орбиталь - почти чистую исходную орбиталь атома В. Следовательно, пара электронов на такой связывающей орбитали в сущности находится вовсе не на настоящей ковалентной связывающей орбитали. На самом деле речь идет о неподеленной паре электронов на атомной орбитали атома В. Взаимодействие атомных орбиталей двух атомов с больщим различием в энергиях пренебрежимо мало. На примере молекулы НР мы увидим, что это означает, если принять во внимание частично ионный характер связи. [c.532]

    В молекуле НР энергии атомной Ь-орбитали водорода и атомной Ь-орбитали фтора настолько различны, что в сущности между ними отсутствует взаимодействие. Слищком низкой энергией обладает также и 25-ор-биталь атома фтора. Только 2р-орбитали фтора достаточно близки по энергии к Ь-орбитали водорода, чтобы эффективное взаимодействие между ними привело к образованию настоящих молекулярных орбиталей. Но из трех 2р-орбиталей фтора две (2р и 2ру) имеют неподходящую симметрию для комбинации с Ь-орбиталью водорода, как это можно видеть из рис. 12-11. Результирующее перекрывание каждой из этих двух р-орбиталей с Ь-орбиталью сводится к нулю, если учесть знаки волновых функций. Молекулярные орбитали в НР поэтому образуются комбинациями 1х-орбитали атома водорода с 2р -орбиталью атома фтора. Эти комбинации дают две молекулярные орбитали с симметрией а-типа, одну связывающую (ст) и другую разрыхляющую (ст ). [c.532]

    Эти локализованные молекулярные орбитали показаны на рис. 13-2. На них располагаются четыре валентных электрона, образующих две локализованные связывающие электронные пары, в согласии с льюисовой структурой связи для ВеН2. Каждая из линейных хр-гибридных орбиталей имеет наполовину р-характер и наполовину 5-характер, а две хр-орбитали позволяют центральному атому Ве в ВеНз присоединять к себе два атома водорода. [c.552]

    Один из способов описания электронного строения молекулы В2Не, основанный на представлении о локализованных молекулярных орбитах, показан на рис. 13-9. Каждый атом бора использует две 5р -гибридные орбитали для образования связей с двумя концевыми атомами водорода. Каждая из остающихся хр -орбиталей используется для образования трехцентровой связывающей орбитали с Ь-орбиталью атома водорода и. хр -ор-биталью другого атома бора. Согласно такой модели, мостиковые атомы водорода должны быть расположены выше и ниже плоскости, в которой лежат оба фрагмента ВН,, что подтверждается экспериментально. [c.558]


    Квадраты этих функций определяют распределения электронной плотности, соответствующие каждой молекулярной орбитали. Все щесть молекулярных орбиталей схематически изображены на рис. 13-25. Три из них являются связывающими, а три-разрыхляющими. Их энергетические уровни показаны на рис. 13-26. Отметим, что на примере рассматриваемых я-орбиталей иллюстрируется общее правило, согласно которому орбитали с больщим числом узловых поверхностей имеют более высокую энергию. Справедливость этого утверждения можно проверить на орбиталях гомоядерных и гетероядерных двухатомных молекул, обсуждавщихся в гл. 12, и даже на волновых функциях атома водорода. [c.575]

    Электронное строение многоатомных молекул может быть объяснено образованием локализованных молекулярных орбиталей между каждой парой соседних атомов в молекуле. Для объяснения связи между центральным атомом молекулы (например, углерод в СН4) и присоединёнными к нему периферийными атомами (четыре атома водорода в СН4) часто используют гибридные орбитали, из которых затем строят локализованные орбитали. Если к центральному атому присоединены четыре периферийных атома, для образования локализованных связывающих орбиталей используются четыре эквивалентных sp -гибрида (тетраэдрические гибридные орбитали) при наличии трех периферийных атомов центральный атом использует для образования связей с ними три своих эквивалентных sp -гибрида (плоские тригональные гибридные орбитали) при двух периферийных атомах центральный атом использует два эквивалентных sp-ги-брида (линейные гибридные орбитали). Например, каждую связь С—Н в молекуле СН4 можно представить как электронную пару на локализованной связывающей молекулярной орбитали, образованной sp -гибрида-ми атома углерода и ls-орбиталями атомов водорода [схема связи (sp -I-+ Is)]. [c.595]

    О вероятностях. Даже если преподаватель решил не останавливаться на подробном обсуждении волнового уравнения Шрёдингера (как бывает, если решено не делать упор на молекулярные орбитали), можно ввести представление о квантовых числах как индексах атомных орбиталей и продемонстрировать взаимосвязь этих чисел с размерами, формой и ориентацией орбиталей. Если эти соотношения удается сделать понятными применительно к атому водорода, их распространение на многоэлектронные атомы обычно не вызывает затруднений у студентов. [c.574]

    Студентам не всегда понятна причина получения молекулярных орбиталей в виде линейных комбинаций атомных волновых функций. Нужно объяснить им, что если бы можно было точно решить уравнение Шрёдингера для молекулы, молекулярные орбитали получались бы из него непосредственно, подобно тому как их получают при решении задачи об атоме водорода. Невозможность получения точных решений заставляет воспользоваться каким-либо приближением, и подход, основанный на использовании МО ЛКАО, оказывается очень удобным. [c.576]

    Основным доводом в пользу нахождения неспаренного спина в тг-си-стеме ароматического лиганда типа пиридина или фенильной группы является результат замещения атома водорода цикла на группу СН3. Если наблюдаемый сдвиг протона СН3 меняет знак по сравнению со знаком сдвига протона, находящегося в том же самом положении в кольце незамещенного соединения, то спиновая плотность находится в л-системе. Это происходит потому, что спиновая плотность в л-систе-ме — преимущественно углеродной системе—делокализована непосредственно на метильные протоны, т.е. связанные в этими протонами орбитали атомов водорода характеризуются небольшими коэффициентами в л-молекулярной орбитали. В незамещенном ароматическом соединении 1.5-орбиталь водорода ортогональна л-системе, и л-спиновая плотность должна поляризовать а-связь С — Н, чтобы повлиять на протоны. В результате знак спиновой плотности на Н противоположен знаку спиновой плотности в л-системе. [c.179]

    В заключение, чгобы показать, насколько важны приближенные волновые функции при интерпретации контактных сдвигов, мы рассмотрим сдвиги в спектрах некоторых комплексов N-окиси 4-метилпиридина [27]. Картина наблюдаемых протонных контактных сдвигов напоминает механизм тг-делокализации со спином, направленным в тс-сис-теме вдоль поля. Исходя из этих сдвигов, можно сделать вывод, что при координации N-окись 4-метилпиридина должна вращаться таким образом, чтобы я-молекулярная орбиталь, которая представляет собой главным образом р -орбиталь кислорода (ось г перпендикулярна плоскости цикла), смещталась с ст-связывающей -совокупностью нике-ля(П), Это приводит к возможности прямой делокализации неспаренного спина по орбитали цикла . Такой тип координации с вращением донора обнаружен в твердом аддукте этого донора. Расчет по методу МО указывает, что некоторые из высокоэнергетических молекулярных орбиталей донора представляют собой главным образом АО кислорода с очень небольщими коэффициентами АО водорода. Таким образом, если даже эти молекулярные орбитали участвуют в связывании с пике-лем(П), они должны давать по крайней мере небольшой непосредственный вклад в протонные контактные сдвиги. [c.185]

    В основу построения электронных конфигураций многоэлектронных молекул с одинаковыми ядрами положена система орбиталей одноэлектроной молекулы Н5. Использовав для построения двух МО Н2 базис из двух Ь-АО, мы получили фз - и ф -орбитали. Для получения большего числа орбиталей, необходимых для размещения многих электронов гомонуклеарных молекул, надо привлечь большее число АО. Так, используя Ь-, 25-, 2р -, 2ру- и гр -орбитали двух атомов водорода, получаем систему из 10 МО молекулы Н2. Молекулярные орбитали систематизируются по энергии, связывающим свойствам и симметрии. [c.71]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Антисимметричной волновой функции отвечает уменьшение плотности электронного облака между атомами (рис. 5, II). При этом положительно заряженные атомы отталкиваются и система становится энергетически неустойчивой. Молекулярной орбитали г11анр отвечает энергия Е т, больишя, чем энергия атома водорода Е . Орбиталь 1[)анг, соответствующая повышению энергии, называется разрыхляющей молекулярной орбиталью. [c.26]

    Электрону, находящемуся па связываюшей орбитали, соответствует электронное облако с повышенной электронной плотностью в межъ-ядерном пространстве, в результате чего энергия взаимодействия электрона с ядрами оказывается ниже, чем энергия того же электрона на исходной атомной орбитали, где он взаимодействует только с одним ядром. Поэтому нахождение электрона на связывающей молекулярной орбитали приводит к сближению ядер до некоторого расстояния, на котором его связывающее действие уравновешивается возрастающей при сближении ядер силой их электростатического отталкивания. В результате этого между атомами возникает химическая связь. Простейшей частицей с химической связью является молекулярный ион Нг, в котором один электрон на связывающей орбитали взаимодействует с двумя ядрами водорода (протонами). [c.10]

    Орбитали 0,, 02 воплощают идею о взаимодействии каждого валентного электрона в атоме бериллия с соответствующим ls-электроном в атоме водорода. Выбор угла а и был продиктован этими соображениями. При этом оказьшается, что локализованные на связях Ве—Н молекулярные орбитали со,, 02 представляют собой линейную комбинацию s—p гибридизованных атомных орбиталей бериллия и ls-вол-новых функций атома водорода. Такая конструкция МО напоминает соответствующее выражение (4.23) для LiH. На этом примере можно проследить возникновение понятия о валентном состоянии атома в пределах заданной молекулярной структуры. Первоначально это понятие было введено в квантовую химию в качестве априорного предполагалось, что проигрыш в энергии, связанный с возбуждением 2s 2р атома бериллия, будет в дальнейшем скомпенсирован вьшгрышем в энергии при формировании в данном примере двух химических связей Ве-Н. Отметим, что замена в определителе Слейтера орбиталей 2og, 1а их линейной комбинацией со,, 602 является вполне корректным преобразованием, переход же от со,, СО2 к со,, С02 представляет собой уже некоторую аппроксимацию. В литературе подробно изложено построение sp -и sp -гибридизованных орбиталей см. [9], [12], [20]. [c.229]

    Теория молекулярных орбиталей существование подобных соединений объясняет следующим образом. Как показано ниже, в ионе HF за счет ls-орбитали водорода и двух 2р-орбиталей двух атомов фтора возникают три молекулярные орбитали связывающая о , несвязывающая а й разрыхляющая [c.293]


Смотреть страницы где упоминается термин Водород молекулярные орбиты: [c.18]    [c.442]    [c.513]    [c.517]    [c.552]    [c.95]    [c.95]    [c.49]    [c.11]    [c.247]    [c.60]    [c.76]    [c.95]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Водород молекулярный

Орбита



© 2024 chem21.info Реклама на сайте