Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура и энергия связи

    Реакционная способность молекулярного водорода существенно зависит от температуры. Энергия связи в молекуле Hj (436 кДж/моль) достаточно велика, и при стандартных условиях активационные барьеры реакций с участием молекулярного водорода не преодолеваются (см. разд. 11.2). Это позволяет при комнатной температуре (и в темноте) существовать смесям водорода, например, с кислородом или хлором. Но уже при 200-400 °С водород проявляет высокую химическую активность. В атмосфере водорода горит хлор  [c.241]

    При некаталитическом процессе высокую энергию связи С—Н можно преодолеть, увеличив время контакта при высоких температурах, что, однако, ведет к убыстрению реакций разложения. [c.13]


    Низкая растворимость твердых углеводородов объясняется тем, что они, имея трехмерную упорядоченную струк — гуру, обладают высоким уровнем энергии связи между молекулами. Введение в сис — тему растворителя, хотя и ослабляет межмолекулярное взаимодей — ствие, но оно, особенно при низких температурах, может оказаться недостаточным для полного разрушения кристаллической структуры и перевода твердых углеводородов в раствор. [c.221]

    Установлено, что энергия связи (R — О2) не превышает 25 ккал, так что RO2 может быть неустойчивым при температурах выше 400°. (Если предположить, что мономолекулярное разложение RO2 - -R + О2 имеет предэкспоненциальный множитель, равный lOi сек" , то период полураспада при 400° составляет около 10 — 10" сек, что довольно хорошо объясняет уменьшение выхода органических перекисей с увеличением температуры.) [c.413]

    В процессе образования граничные пленки сначала физически адсорбируются на поверхности трения. Энергия связи таких пленок с поверхностью относительно невелика. Во многих случаях физически адсорбированные пленки вступают в химическую реакцию с поверхностью трения с образованием новой субстанции — хемосорбированных пленок, характеризующихся высокими энергиями связи. Существенную роль при образовании пленок в результате адсорбции или химической реакции играет температура. При ее повышении рост пленок за счет физической адсорбции уменьшается, скорость образования химически связанных пленок увеличивается. Температуру, при которой разрушается адсорбированная пленка, можно рассматривать как меру прочности этой пленки. Эта температура называется критической температурой перехода к сухому трению [249]. Действительные температуры зависят от режима [c.238]

    Открытие явления адсорбции газов при высоких температурах (Тейлор) позволило объяснить адсорбцию в контактных процессах. Молекулы газа, адсорбированные при высоких температурах, связаны с поверхностью твердого тела в мономолекулярном слое силами химического происхождения (хемосорбция). Скорость хемосорбции значительно возрастает с повышением температуры. Энергия активации в данном случае превышает 10 ккал/моль. [c.274]

    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]

    Физическая адсорбция протекает достаточно легко, поэтому равновесное состояние устанавливается быстро даже при низких температурах. Хемосорбция связана с энергией активации (табл. 53), и скорость процесса незначительна, но возрастает с повышением температуры равновесное состояние также устанавливается медленно. Влияние температуры на количество адсорбированного вещества показано на рис. УП-1 для типичного случая адсорбции водорода на смешанном катализаторе . [c.205]

    Основные типы связей, имеющиеся в структуре вулканизатов, полученных на основе углеводородных каучуков, характеризуются следующими значениями энергии связи связи каучук — сажа 75— 83 кДж/моль, —С—С— связи главной цепи 352 кДж/моль связи С—S — в узлах, С—(5) —С— вулканизационной сетки 250 кДж/моль и менее. Относительно низкие значения энергии связи сажа — каучук вызывают быстрое падение прочности рассматриваемых резин при повышении температуры. [c.87]


    Экстраполяция кинетических величин на более низкие температуры неизбежно связана с внесением погрешности. Если аррениусовский ход параметра действительно сохраняется при более низкой температуре, то главный источник погрешности — неточность в измерении энергии активации. Когда скорость и (или какая-либо другая величина) измерена при температуре Т[ (средняя температура в изученном температурном интервале), а экстраполируется на температуру 7г, то погрешность в оценке логарифма скорости равна [c.248]

    Результаты этих расчетов представлены на рис. 6.10 (кривая /). Максимальные значения к близки по порядку величины к толщинам адсорбционных а-пленок воды на поверхности кварца при комнатной температуре [42]. При понижении температуры толщина пленок уменьшается, составляя л 1,5нм при —6°С. Вид температурной зависимости к(1) хорошо согласуется с полученной ранее в работе [315] температурной зависимостью толщины незамерзающих прослоек воды между поверхностью льда и частицами аэросила (кривая 2). Количественное сопоставление кривых / и 2 не имеет смысла, поскольку они относятся к различным системам в первом случае — к незамерзающим адсорбционным пленкам, граничащим с газом, и во втором — к незамерзающим прослойкам между льдом и твердой поверхностью частиц. Еще более высокие значения/г были получены для пленок воды на поверхности льда [308]. Их толщина составляет около 5,0 нм при —6°С, возрастая до 10,0 нм при повышении температуры до —1 °С. Таким образом, толщина незамерзающих слоев воды существенным образом зависит от того, в контакте с какими фазами они находятся, т. е. от природы поверхностных сил, энергии связи и способа ориентации молекул воды вблизи различных поверхностей. [c.115]

    Какое влияние на условия равновесия химической реакции оказывают разрыв связей и повышение неупорядоченности системы Если бы единственным заслуживающим внимания фактором была только энергия связей, какой была бы константа равновесия для диссоциации молекул водорода на атомы Если бы единственным важным фактором была только энтропия, какой была бы константа равновесия для диссоциации водорода Используя свои ответы на эти вопросы и соотношение между С, Я и 5, объясните, почему диссоциация газообразного водорода сильнее выражена при высоких температурах. [c.114]

    Из (1.77) и (2.20) следует, что с ростом температуры скорость простой реакции увеличивается. Как правило, это так, однако известны процессы, скорость которых с ростом температуры падает [6, 9]. С формальной точки зрения это означает, что в уравнении (2.20) величине (—Е) нужно приписать отрицательный знак — (—Е) = = Е. Однако (1.77) и (2.55) также остаются справедливыми, следовательно, для таких процессов энергия активации меньше энергии разрыва связи. Такие процессы на первый взгляд незаконны , поскольку исходные молекулы вообще не могут существовать и должны самопроизвольно распадаться, так как для их разложения необходима энергия, меньшая энергии связи. На самом деле это, конечно, не так, и отрицательные энергии активации можно физически объяснить [9], если учесть, что коэффициент скорости не есть физическая константа, характеризующая частицу. Макроскопический коэффициент скорости к есть среднее из всех микроскопических коэффициентов скорости частиц, находящихся на различных квантовых уровнях. Если к — вероятность спонтанного распада частицы, находящейся в /-м состоянии и имеющей энергию Еу, то равновесная часть таких частиц от их общего числа с учетом (2.20), (2.26), (2.42) может быть записана в виде [c.72]

    Энергия связей молекул в ассоциатах незначительная, поэтому они весьма неустойчивы и легко разрушаются механическим путем и при повышении температуры. Однако при отрицательных температурах (для каждого топлива она своя) склонность реактивных топлив к. образованию ассоциатов следует учитывать при рассмотрении вопросов, связанных с прокачкой топлива по элементам топливной системы летательного аппарата и силовой установки. [c.53]

    Возможность образования бирадикала при термическом активировании алкена отмечена в работах [6, 11]. При получении молекулой алкена значительных количеств энергии она, равномерно распределяясь по энергиям связей, приведет после образования бирадикала к разрыву наиболее слабой из оставшихся связей. Таким образом, для бирадикала бутена-2 при высокой температуре вполне вероятен разрыв по связям С—С с образованием новых бирадикалов. [c.58]

    Печь — это термическая система материал—среда—футеровка . В рабочей камере печи во время ее функционирования одновременно находятся исходные материалы, полученные продукты, печная среда, которые заключены в огнеупорные (кислотоупорные) материалы футеровки и ограждены ими от окружающей среды. Все эти материалы имеют различные и постоянно меняющиеся температуры, в связи с чем они находятся в постоянном теплообмене в замкнутой термической (теплообменной) системе материал—среда—футеровка , в которой все эти элементы взаимосвязаны, взаимозависимы и взаимообусловлены. Теплота в этой термической системе, как и всякая энергия, передается в направлении от элемента с высшим потенциалом (источник теплоты) к элементу с низшим (приемник теплоты). Так как потенциалом переноса теплоты является температура, то процесс распространения теплоты непосредственно связан с температурным полем — совокупностью мгновенных значений температур в пространстве и во времени. [c.55]

    Галогены непосредственно не взаимодействуют с кислородом. Это обусловлено небольшой энергией связи Г—О и невозможностью использовать высокие температуры для осуществления реакций [c.476]

    Ограничимся рассмотрением только наиболее типичного случая, когда повышение температуры газа при постоянном давлении вызывает и усиливает процессы диссоциации молекул данного газа на более простые частицы. Так, двухатомные молекулы Рг, Ог, На, О2 и др. с повышением температуры постепенно диссоциируют на свободные атомы (термическая диссоциация молекул). В первую очередь диссоциируют молекулы, в которых энергия связи между атомами сравнительно невелика (Рг, СЬ). Диссоциация молекул с более прочной связью (Н2, О2) начинается при более высоких температурах (рис. 32,а). Повышение давления при данной температуре уменьшает степень диссоциации. На рис. 32,6 [c.117]

    Степень связанности электрона в данном металле в известной степени характеризуется величиной работы выхода электрона, которая в настоящее время определяется экспериментально (табл. 13). Работой выхода электрона называется количество энергии, которое необходимо для выделения электрона из металла. Она определяется измерением наименьшей энергии электромагнитных колебаний, способных выделять электроны из данного металла (фотоэлектрический эффект), или измерением температуры, при которой начинается самопроизвольное выделение металлом электронов термоэлектронная эмиссия). Но измеряемая таким путем работа выхода электрона определяет количество энергии, необходимое для выделения электрона с поверхности металла, и не равна энергии связи электрона внутри металла. Работа выхода электрона не равна и потенциалу ионизации свободных атомов, а меньше него примерно на 2—5 эв (в частности, вследствие кинетической энергии, присущей электрону в металле). [c.136]


    При повышении температуры льда до 0° С, когда происходит плавление его (при атмосферном давлении), в результате теплового движения начинают разрываться водородные связи между молекулами воды. Однако при 0°С и несколько повышенных температурах энергия теплового движения еще недостаточна для разрыва всех водородных связей между молекулами, имевшихся в [c.165]

    Мак-Брайд и др. выпустили таблицы термодинамических свойств 210 веществ, образуемых первыми 18 элементами периодической системы. Данные относятся к газообразному состоянию веществ при температурах от О да бООО К. Кроме обычных величин Ср, Н°г — Н1, S°r, (Gr — Яо), АН1 т и g Kf.r — приводятся значения функции /г при базисной температуре 298,15 К (в справочнике эта функция обозначена через Яг) и ДЯ/, г реакций образования вещества из свободных атомов элементов. Слабым местом расчета многих значений параметров реакции образования (из простых веществ или из свободных атомов) является щирокое использование величин средней энергии связи. [c.77]

    Для двухатомных молекул энергия связи ( ) равна теплоте атомизации их (АЯа, точнее при данной температуре. Но уже для трехатомных (и тем более для четырех-, пятиатомных и т. д.) [c.161]

    Одна из характерных особенностей высоких температур состоит в том, что энергия теплового движения частиц становится в этих условиях соизмеримой с энергией химических связей в молекулах, с более высокой энергией возбуждения электронов и даже с энергией связи электронов в атомах и молекулах. В результате этого происходят процессы диссоциации, в которых многие радикалы и [c.170]

    Поскольку энергии диссоциации связей С—Вг как в алкил-, так и в арил-бромидах порядка 50—70 ккал, а /)(Н — 0Н) = 118 ккал, свободно-радикальный цепной процесс в таких системах при 25° невозможен. В действительности в большинстве случаев энергии связей настолько велики, что исключают возможность протекания цепных свободно-радикальных реакций между органическими соединениями при температурах ниже 100°. (Исключение составляют такие соединения, как перекиси, азосоединепия и системы, содержащие окислительно-восстановительные реагенты, такие, как Fe " , Со и т. д.) [c.471]

    В интервале температур до 750"С скорость нерпо11 стадии выше скорости второй. Отсутствие водорода в углеродистых отложениях также говорит в пользу их образования по механизму карбидного цикла. На катализаторах, содержащих оксиды металлов, склонностью к переходу в кокс обладают главным образом ненасыщенные, преимущественно дненовые углеводороды, и в гораздо меньшей степени — насыщенные парафиновые углеводороды [3.19]. Чем выше энергия связи углерода углеводородных молекул с металлом, тем интенсивнее должно быть коксообразование. [c.64]

    Окисление коксовых отложений на поверхности оксидов железа протекает по стадийному механизму. При высоких температурах выгорание углерода лимитируется присоединением кислорода к катализатору [3.33]. Повышение энергии связи кислорода в этом случае должно способствовать снижению энергии активации окисления углерода и ускорению процесса регенерации. Кинетические кривые выгорания углеродистых отложений при различных температурах для за-углероженного оксида железа (П1) существенно различаются, соответственно будет различаться и фазовый состав образцов в процессе выгорания отложений. [c.69]

    Величина энергии связи —F равна около 104 ккал/моль (по сравнению с 66 ккал/моль для —С1), в то время как величина энергии связи >С—С< составляет примерно 81 ккал/моль. Таким образом, тепловой эффект реакции фторирования достаточно велик для того, чтобы быть определяющим при разрыве связей С—С в реагирующих молекулах. Поэтому для прямого фторирования совершенно необходимо обеспечить температурный контроль реакции, например, разбавляя реакционную смесь инертным газом (Nj) или применяя реакторы с металлической насадкой (ситами), способной быстро поглощать тепло. Фторирование в жидкой фазе позволяет легче контролировать температуру в реакторе. Осуществление процесса этого типа приводит в случае метана и этана к получению смеси MOHO- и полифтор производных. [c.273]

    Связь между углеродом и фтором хотя и полярна, но мало поляризуема. Более того, по мере накопления атомов фтора в молекуле ее полярность уменьшается. Одновременно уменьшается длина связи С—F и увеличивается ее энергия [3—5]. Энергия связи С—F весьма велика (498 кДж/моль), и эта связь не рвется по гомолитическому механизму, не расщепляется кислородом при высокой температуре [6]. Единственным источником радикалов, инициирующих цепной деструктивный распад перфторнрованных углеводородов, является термический разрыв углерод-углеродной связи. [c.502]

    Как показывает последний пример, скорость химической реакции очень сильно возрастает при повышении температуры. Это связано с тем, что элементарный акт химической реакции протекает не прп всяком столкповептг реагирующих молекул реагируют только те молекулы активные молекулы), которые обладают достаточной энергией, чтобы разорвать или ослабить связи в исходных частицах и тем самым создать возможность образования новых молек л. Поэтому калсдая реакция характеризуется определенным энергетическим барьером для его преодоления необходима энергия активации — некоторая избыточная энергия (по сравнению со средней энергией молекул при данной температуре), которой должны обладать [c.91]

    Этан обменивается с гораздо большей скоростью, чем метан, т. е. при более низких температурах (от —50 до 200° С), как и следовало ожидать ввиду более низкой энергии связи С—Н (разд. П1.1), но в общих чертах процессы обмена метана и этана протекают одинаково, и множественный обмен этана можно объяснить наличием а, р-диадсор-бированных частиц  [c.68]

    То же расположение металлов в ряд по убывающей активности относительно множественного обмена мы находим и для высших гомологов доказана более высокая реакционная способность вторичного и третичного атомов Н при низких температурах [10] СНз СНОСНз составляет 90%, а (СНз)зСО 100% моподейтерированных частиц на Ш или N1 3 соответствии со значениями энергии связи С—Н (разд. П1.1). [c.68]

    Способность алкенов с внутренней двойной связью к цис-транс-изомеризации под действием высоких температур хорошо известна и обсуждалась еш,е Вант-Гоффом в 1875 г. Количественно цис-транс-изомеризация впервые была исследована Кистяковским и Смитом. В работе [1] изучена термическая изомеризация цис-бу-тена-2 при температурах выше 340 °С. Реакция, по полученным данным, протекала по уравнению первого порядка, причем скорость ее мало увеличивалась с температурой (энергия активации 74 600 Дж/моль, предэкспонейциальный множитель ЫО с- ). Для объяснения этого явления был предложен механизм, предусматривающий образование активного комплекса при тройных соударениях, или радикальный. Однако экспериментальные результаты Кистяковского и Смита по термической изомеризации цис-бугена-2 не удалось воспроизвести, и, по более поздним данным [2, 3], они не являются надежными из-за недостаточной точности анализа. [c.50]

    И. Вы знаете, что молекулой называется наименьшая частица веш,ества, сохраняюш,ая свойства всего вещества в целом. Какие из нижеприведенных свойств веществ можно использовать для подтверждения формулировки плотность, цвет, энергия связи, дипольный момент, масса, твердость, угол между связями, энтальпия образования из атомов, энтропия, растворимость, вкус, цвет, межъядерные расстояния, скорость движения, размер, кинетическая энергия, температура, давление, магнитный момент. Если вы считаете, что предложенное выше определение молекулы неточно или неправильно, дайте свое собственное определение. [c.16]

    И N2. Это иллюстрирует также рис. 3.25, показывающий, что энтропии обоих веществ в кристаллическом, жидком и газообразном состояниях при одной и той же температуре почти не отличаются. Изоэлектронными молекуле СО являются также существующие в вакууме частицы ВР, N0+, Вер , СЫ и ВО". Поэтому у них близкие энергии связи, лабораторных условиях СО получают, действуя на муравьи-кислоту водоотнимающими веществами (Н2804 или Р2О5) НСООН —> СО + Н2О [c.358]

    Гидроксил является частицей весьма неустсй швой. В обычных условиях он в этом отношении совершенно несопоставим с молекулами воды. Однако с повышением температуры устойчивость молекул воды уменьшается сильнее, чем гидроксила, и в области температур около 3500 °К в равновесной смеси молекул воды с продуктами их термической диссоциации концентрация молекул гидроксила становится большей, чем молекул самой воды, что отвечает более высокой энергии связи водорода в них. [c.86]

    Газы при высоких температурах. Повышение температуры прежде всего вызывает усиление всех форм теплового движения частиц. При высоких температурах энергия теплового движения частиц становится соизмеримой с энергией химической связи в молекулах, с энергией возбуждения новых электронных уровней и с энергией связи электронов в атомах и в молекулах. Поэтому при высоких температурах в газе образуются возбужденные частицы и продукты диссоциации молекул в виде свободных атомов или валентно ненасыщенных групп (радикалов), которые могут находиться в равновесии с исходными молекулами. Являясь вместе с тем очень реакционно способными, эти частицы могут вступать во взаимодействие между собой или с другими частицами, образуя новые сочетания. То же относится к продуктам ионизации. Наряду с этим при высоких температурах в газах могут содержаться пары веп1еств, практически не испаряющихся при обычных температурах, а также частицы, образующиеся при термическом разложении этих веществ. В результате при высоких температурах в газах содержатся (при равновесном состоянии системы) новые, часто совершенно непривычные виды частиц, отвечающие валентным состояниям элементов, нехарактерным или неизвестным для них при обычных температурах. Эти частицы могут быть или более простыми, чем отвечающие им. частицы при обычных температурах (например, ОН, 510, 50), или, наоборот, более сложными (Сз, Сд, Ыаг, Сев, Мда, Ыа(0Н)С1, ВагОз, М05О15 и др.). [c.117]


Смотреть страницы где упоминается термин Температура и энергия связи: [c.360]    [c.13]    [c.67]    [c.118]    [c.207]    [c.213]    [c.13]    [c.14]    [c.463]    [c.341]    [c.342]    [c.162]    [c.92]    [c.150]    [c.75]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи

Энергия температуры



© 2025 chem21.info Реклама на сайте