Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая система элементов первая группа

    Элементы подгруппы меди. Медь Си и ее электронные аналоги — серебро Ag и золото Аи — являются элементами побочной подгруппы первой группы периодической системы элементов Д. И. Менделеева. Электронная структура атомов элементов подгруппы меди может быть выражена формулой. .. п — 1) 5 , где п — номер внешнего электронного слоя, совпадающий с номером периода в периодической системе. [c.303]

    Пример 4. В первой группе периодической системы элементов значения энергий ионизации составляют Е (Ь1)=520, Е (Сз) = = 375, Е (Си) =743, Е (Аи) =888 кДж/моль. В какой подгруппе металлические свойства выражены сильнее и почему  [c.24]


    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Что называется группой периодической системы элементов Что называется периодом Сколько элементов содержится в каждом из первых шести периодов  [c.324]

    Общая характеристика. В периодической системе элементов Д. И. Менделеева водород занимает место в первой группе и первом периоде, а в некоторых таблицах его помещают в седьмой группе того же периода, так как по ряду признаков он является аналогом галогенов. [c.128]

    Азот — первый элемент главной подгруппы пятой группы периодической системы элементов Д. И. Менделеева. Электронная структура его атома соответствует формуле з 2з 2р н может быть выражена схемой  [c.168]

    В каждой группе периодической системы элементов первый ее член характеризуется наличием у атома только четырех орбиталей, в то время как атомы остальных элементов помимо 5-и р-орбиталей могут использовать также -орбитали. Вследствие этого наибольшие различия наблюдаются в химии первого и последующих элементов группы. Кроме того, свойства иода заметно отличаются от свойств брома и хлора, так что между крайними членами группы галогенов фтором и иодом можно обнаружить лишь незначительное химическое сходство. [c.57]

    Почему в короткопериодном варианте Периодической системы элементов водород помещают в первой и седьмой группах одновременно Приведите примеры сходства водо рода со и елочными элементами и с галогенами. [c.69]

    Короткопериодный вариант состоит из десяти рядов, причем каждый нечетный ряд (за исключением первого) состоит из восьми элементов. Первые два элемента четных рядов больших периодов и все элементы (за исключением первых двух) нечетных рядов этих же периодов входят в главные подгруппы. Поэтому в периодической системе восемь элементов каждого периода образуют восемь главных подгрупп, а остальные десять элементов каждого большого периода — восемь побочных подгрупп при этом девятый и десятый элементы объединяются с восьмым, вследствие чего восьмая побочная группа содержит триады элементов. Главные и побочные подгруппы короткопериодной формы системы элементов соответствуют группам А и В длиннопериодной формы. [c.42]

    Общепринятой формой выражения периодического закона является периодическая система элементов. Химические элементы в системе расположены в порядке последовательного увеличения зарядов ядер их атомов (этим, как известно, и определяется атомный номер элемента) и тем самым в порядке возрастания числа электронов. Элементы в системе расположены рядами. Первые три ряда являются одновременно и первыми тремя периодами системы (они называются малыми периодами). Последующие периоды, начиная с четвертого, состоят из двух рядов и называются большими. Всего в системе семь периодов (последний еще не завершен) и десять рядов. Элементы, сходные по своим важнейшим характеристикам, образуют вертикальные столбцы, называемые группами всего в современной периодической системе элементов восемь групп (включая нулевую). [c.23]


    Если данных для соединен йй, строго однотипных с рассматриваемым, недостаточно, на практике нередко возникает необходимость использовать для сопоставления свойств вещества менее однотипные, например соединения элементов второго ряда периодической системы (лития, бериллия, бора) или аналогичные соединения элементов, принадлежащих к другой подгруппе (и даже к другой группе) периодической системы, или первые члены гомологических рядов органических соединений. В таких случаях хорошие результаты получаются с помощью метода двойного сравнения (см. 19). [c.177]

    Нг1 основании периодического закона сформировалось учение о периодичности, которое складывается из трех основных направлений. Первое устанавливает связь макроскопических свойств простых и сложных веществ со строением и свойствами атомов, составляющих эти вещества. Эта сторона учения о периодичности получила развитие с созданием теории строения атома. Второе направление связано со способом выражения закона в виде периодической системы элементов важнейшими в этой системе являются представления об индивидуальных свойствах, специфических (элементы — аналоги по группе, по ряду, по диагонали) свойствах и общих свойствах (формы соединений), а также о месте элемента в системе. Это направление нашло выражение в сравнительном методе изучения свойств элементов и их соединений. Им широко пользовался Д. И. Менделеев, оно применяется до сих пор. Третье направление — применение идеи периодичности к другим объектам ядрам атомов, элементарным частицам и т. д. [c.44]

    Работы в области совершенствования катализаторов продолжаются. Например, предлагается комбинация из нескольких катализаторов, в том числе совершенно новых. В одном из патентов США [167] фирмой иОР предложен процесс, осуществляемый в реакторе с несколькими отдельными зонами. Катализатор, содержащий 4,1% цинка и 10,4% металла VI группы Периодической системы элементов Д. И. Менделеева (например, молибдена), обеспечивает очень малое снижение активности при переработке высокосернистого остаточного сырья. Поэтому традиционные катализаторы АКМ и АНМ могут быть использованы во второй ступени, а 2п—Мо или В1—Мо —в первой ступени двухстадийного обессеривания. Процесс рекомендуется проводить при следующем режиме  [c.267]

    Этот метод применим главным образом для получения металлорганических соединений металлов основных подгрупп первой, второй и отчасти третьей групп периодической системы элементов. [c.207]

    В первой группе периодической системы элементов энергия ионизации атомов главной подгруппы значительно меньше энергии ионизации атомов побочной подгруппы. Можно ли считать такое соотношение выполнимым и в седьмой группе периодической системы  [c.25]

    В кристаллическом натрии происходит перекрывание зон, образованных 35- и Зр-орбиталями. Для металлов первой группы это перекрывание не играет существенной роли, так как количество свободных орбиталей в 5-зоне у них велико. Однако такое перекрывание 3- и р-зон, наблюдаемое и для металлов второй группы периодической системы элементов, играет важную роль. Атомы этих элементов имеют по два валентных 5-электрона, следовательно, все орбита-, ли в 5-зоне их кристаллов будут полностью заполнены. Лишь глубокое перекрывание зон, образованных 5- и /7-орбиталями их атомов, сообщает металлические свойства кристаллам этих элементов. Образование зон проводимости в кристаллах -элементов обычно сопровождается значительным перекрыванием т- и (п — 1) -зон, при- [c.84]

    Чем объяснить, что при переходе от восьмой группы периодической системы к первой сходство в свойствах элементов главных и побочных подгрупп растет, а различие падает  [c.165]

    В зоне проводимости, образованной за счет взаимодействия Зх-орбиталей, N атомов натрия образуют такое же число энергетических уровней. Так как у каждого атома натрия имеется лишь по одному валентному электрону, при низких температурах в зоне проводимости будет заполнена только половина уровней. Большое число незанятых энергетических уровней в зоне приводит к высокой подвижности электронов и обеспечивает высокую электрическую проводимость металлического натрия. Аналогичное строение зоны проводимости имеют кристаллы и других элементов первой группы периодической системы элементов, причем ширина зоны проводимости максимальна у элементов побоч- [c.74]

    ЭМАНАЦИЯ (радой) Еш — первое название радиоактивного элемента нулевой группы периодической системы элементов Д. И. Менделеева с п. н. 86. Массовое число наиболее долгоживущего изотопа 222, Т, = 3,825 дня. Название этого изотопа — радон — присвоено всему элементу. При распаде Э. образуются радиоактивные изотопы таллия, свинца, висмута и полония, с которыми связана радиологическая токсичность Э., особенно [c.292]

    Из приведенных в таблице данных можно усмотреть несколько закономерностей. Во-первых, ионная электропроводность растет в пределах одной группы периодической системы элементов с ростом атомного номера, как это видно из данных для катионов щелочных металлов. Это, казалось бы, находится в противоречии с формулой (8.9), согласно которой подвижность обратно пропорциональна величине коэффициента поступательного трения иона, который, в свою очередь, в соответствии с законом Стокса растет с ростом размера иона. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na , Mg и АР+ показывает, что практически не наблюдается роста ионной электропроводности, а тем самым и подвижности с увеличением заряда иона, опять-таки в кажущемся противоречии с формулой (8.9). Оба эти факта объясняются, тем, что в электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион N3 , а последний, в свою очередь, имеет большую сольватную оболочку, чем ион калия. Этим же объясняется малое отличие в подвижности ионов Ма" , Mg и С увеличением заряда, естественно, резко [c.127]

    ЭЛЕМЕНТЫ ПЕРВОЙ ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ [c.397]

    В кристаллическом натрии происходит перекрывание зон, образованных Зх- и Зр-орбиталями. Для металлов первой группы это перекрывание не играет существенной роли, так как число свободных орбиталей в 5-зоне у них велико. Однако такое перекрывание 5- и р-зон, наблюдаемое и для металлов второй группы периодической системы элементов, играет важную роль. Атомы этих элементов имеют по два валентных 5-электрона, следовательно, все орбитали в 5-зоне их кристаллов будут полностью заполнены. Лишь глубокое перекрывание зон, образованных 5-и р-орбиталями их атомов, сообщает металлические свойства кристаллам этих элементов. Образование зон проводимости в кристаллах -элементов обычно сопровождается значительным перекрыванием пз- и (л—1)с -зон, причем последние значительно уже зон, образованных л5-орбиталями. Это значит, что перекрывание -орбиталей в таких кристаллах невелико. Поэтому целый ряд свойств -элементов можно трактовать на основании модели [c.75]

    ВосстаьДовительные свойства металлов в основном зависят от агрегатного состояния, среды, радиуса атома и количества валентных электронов. Наиболее сильными восстановителями являются атомы элементов главных подгрупп двух первых групп периодической системы элементов Д. И. Менделеева — щелочные и щелочно-земельные металлы, а также лантаноиды и актиноиды. Такие металлы, как Аи, Ag, Р1, 1г, Оз, Рс1, Ни, НЬ, химически малоактивны, трудно окисляются. Они имеют большие потенциалы ионизации. [c.119]


    Развитие периодического закона. Периодический закон ждет не только новых приложений, но и усовершенствований, подробной разработки и свежих сил , — указывал Д. И. Менделеев в 1889 г. Первым серьезным испытанием, которое пришлось выдержать этому закону уже вскоре после его всеобщего признания, было открытие в 1893 г. аргона. По своему атомному весу (39,9) новый элемент должен был располагаться в периодической системе между калием (39,1) и кальцием (40,1), где для него не имелось свободного места. Лишь после нахождения на земле гелия и открытия других инертных газов стало ясно, что все они являются членами особой группы, которая должна быть расположена в системе после седьмой. Таким образом, та угроза самому существованию периодического закона, которая возникла в результате открытия аргона, с открытием остальных -инертных газов превратилась в свою противоположность —периодическая система элементов стала более полной и законченной. По-ви-димому, периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещается , — писал Д. И. Менделеев в 1905 г. [c.218]

    В связи с принятым делением простых веществ на металлы и неметаллы можно, отметить, что в периодах слева направо усиливаются неметаллические свойства. В группах заметно увеличение неметаллических свойств снизу вверх (наиболее ярко это проявляется в VI, V ll VIII группах). Таким образом, первые группы периодической системы элементов не содержат неметаллов (если не считать Is-элементов, т. е. водород и гелий). Bill группе к неметаллам относится один бор, в IV группе — углерод и кремний, в V группе — азот, фосфор, мышьяк, в VI группе — кислород, сера, селен, теллур, в VII — фтор, хлор, бром, иод, астат. Простые вещества элементов VIII группы при обычных условиях газообразны, а в конденсированном состоянии образуют ковалентные кристаллы, которые уже при незначительном нагревании легко плавятся, а затем из жидкого состояния переходят в газообразное. [c.118]

    Как видно из этих результатов, в водной среде водород стоит гораздо ближе к Ыа, чем к С1, т. е. при этих условиях действительно приобретает сходство с металлами. Однако сходство это присуще не самому атому, как таковому, а потому и не может служить основанием для определения положения водорода в периодической системе. Структурная однотипность его атома с атомами элементов первой группы имеет такой же формальный характер, как однотипность атома гелия с атомами элементов второй группы. [c.237]

    Металлы содержатся во всех группах периодической системы элементов. Первые три группы состоят только из металлов за исключением водорода в 1 группе и бора в 1И группе. С металлами вы знакомы в самых общих чертах, теперь вам предстоит расщирить знакомство с ними. Вспомним, что типичные металлы характеризуются малым числом электронов во внещ-нем слое атома и слабой связанностью их с атомом. [c.121]

    Полоужение отдельных элементов, а иногда и групп элементов, устанавливалось не сразу, а по мере развития периодического закона. В свое время оживленную дискуссию вызвало размещение водорода в периодической системе. По некоторым химическим свойствам поведе-ние водорода напоминает поведение щелочного металла. По аналогии со щелочными металлами водород образует сольватированные катионы например, натрий образует Ма" " НдО, а водород—Н НзО. Гидрат юка водорода очень прочен и получил название гидроксония, его соычно обозначают НзО . Некоторые системы водород — металл (мсталлэподобные гидриды) напоминают металлические сплавы. Все этл л другие подобные соображения побуждали рассматривать водород кал аналог щелочных металлов и помещать его в периодической системе Б первую группу. Такой точки зрения придерживался и Д. И. Менделеев, располагая водород над литием. Позже было обращено внимание на большое сходство водорода со свойствами галогенов. Подобно последним водород образует двухатомные молекулы На. При взаимо- [c.52]

    В первый период развития гидрогенизационных процессов в качестве катализаторов применялись специальным образом приготовленные металлы VIII группы периодической системы элементов никель, кобальт, железо, платина, палладий или их окислы [1—7]. Катализаторы этого типа характеризуются весьма высокой гидрирующей способностью и могут использоваться на носителях и без них. В литературе подробно освещены способы приготовления и применения никеля Ренея [8,9], платиновой и палладиевой черни, окиси платины [10], никеля на кизельгуре или на окиси алюминия [II], платины и палладия на активированном угле [12, 13]. [c.64]

    Углерод — первый элемент IV группы периодической системы элементов. Два его электрона находятся на внутреннем -уровне, а на внешнем, /.-уровне, — четырё эЛектрона (рис, 3). [c.16]

    Из таблицы видно, что аналитические группы ионов занимают определенные участки в периодической системе элементов. Наибольшее совпадение между группами периодической системы и аналитическими группами отмечается у I и II аналитических групп первая аналитическая группа (без Mg +) соответствует группе IA щелочных металлов, а вторая — подгруппе щелочно-земельных металлов, входящих в группу ИА. Наиболее многочисленная III аналитическая группа включает в себя катионы элементов групп IIIА и IIIB, а также лантаноидов, актиноидов и ряда других переходных металлов, например хрома, марганца, железа, кобальта, никеля, цинка. При этом часть ионов III аналитической группы — Zn +, [c.230]

    ПЛУТОНИЙ (Plutonium, от названия планеты Плутон) Ри — радиоактивный химический элемент семейства актиноидов 1П группы 7-го периода периодической системы элементов Д. Н. Менделеева, п. н. 94, массовое число наиболее долгоживущего изотопа 244, стабильных изотопов не имеет. Впервые П. получен в 1940 г. Г. Сиборгом с сотрудниками. Наиболее важен изотоп зврц = 24 ООО лет), который может использоваться для получения ядерной энергии и в атомных бомбах как взрывчатое вещество. П.— первый искусственный элемент, который начали получать в промышленных масштабах. Известно несколько оксидов П., а также большое количество интерметаллических соединений, сплавов. Элементарный П.— металл серебристо-белого цвета, т. пл. 637° С. П. весьма токсичен. При попадании в организм П. задерживается в нем, концентрируясь в костях, вызывает тяжелые нарушения деятельности организма. [c.194]

    Практическое значение и большой теоретический интерес представляет вопрос о связи между условиями хроматографического разделения элементов и их положением в периодической системе Д. И. Менделеева. Если разделению подлежат элементы разных групп периодической системы, то процесс хроматографирования облегчается тем, что элементы разной валентности имеют различное сродство к ионообменнику. Закономерным уменьшением металлических свойств элементов в периодах обусловлено преимущественное использование катионитов для" разделения смесей элементов I—IV групп, и анионитов для разделения смесей элементов V— VIII групп, а также возможность отделения элементов первых групп от элементов последних групп как на катионитах, так и на анионитах. Переходные [c.116]


Смотреть страницы где упоминается термин Периодическая система элементов первая группа: [c.298]    [c.74]    [c.70]    [c.89]    [c.105]    [c.55]    [c.18]    [c.114]    [c.175]    [c.252]    [c.31]    [c.84]    [c.94]    [c.97]   
Основы общей химии Том 3 (1970) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Группы периодической системы

Первая группа периодической системы

Периодическая первая

Периодическая система

Периодическая система элементо

Периодическая система элементов

Элемент группы

Элемент периодическая



© 2025 chem21.info Реклама на сайте