Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платиновые металлы каталитическая активность

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Этилен Ацетальдегид Водные растворы солей платиновых металлов каталитическая активность тем больше, чем меньше прочность связи металла с лигандом [1950]. См. также [1028] [c.448]

    Сравнение данных по ионизации водорода и кислорода показывает, что ток обмена кислородного электрода на несколько порядков ниже тока обмена водородного электрода, поэтому подбор эффективных катализаторов для кислородного электрода особенно важен При разработке ТЭ. Активными катализаторами кислородного электрода являются платиновые металлы. Каталитическая активность сплавов может быть выше каталитической активности чистых металлов. Так, сплавы палладия с платиной и рутения с платиной активнее одной платины. Сплавы Р1 — Аи и Рс1—Аи активнее чистых платины, палладия и золота. [c.80]

    Металлы платиновой группы, нанесенные на -АЬОз, катализируют гидродеалкилирование толуола [254—256]. Каталитическую активность металлов в указанной реакции сравнивали при 300— 500 °С в условиях импульсного режима [254], а также при 350— 560 °С в проточной системе [256] при атмосферном давлении. При 490 С активность катализаторов изменяется в ряду Rh > Ir > [c.174]

    ЩИХСЯ между силикатными слоями. По этой причине глинистые почвы очень удобны для выращивания растений. Это же свойство позволяет использовать их в качестве носителей для металлических катализаторов. Один из распространенных катализаторов-платиновая чернь - представляет собой тонкоизмельченную металлическую платину, полученную осаждением из раствора. Каталитическая активность платиновой черни усиливается высокоразвитой поверхностью металла. Аналогичный эффект достигается путем осаждения металла-катализатора (N1 или Со) на поверхность глины. Атомы металла покрывают внутренние поверхности силикатных листов, а кристаллическая структура глины предотвращает слипание металла в бесполезную массу. Согласно предположению Дж. Бернала, первые каталитические реакции на ранних стадиях эволюции жизни, еще до появления биологических катализаторов (ферментов), могли протекать на поверхности глинистых минералов. [c.637]

    Влияние каталитической поверхности на превращаемую молекулу связано с геометрическим строением обоих компонентов. Было выяснено [279] соотношение между явлениями, происходящими на поверхности металлического катализатора, и явлениями на поляризованном электроде. При исследовании влияния поляризации на каталитическую активность таких металлов, как платиновая чернь и палладий, применяемых в каталитическом разложении перекиси водорода, было установлено, что анодная поляризация скорее ослабляла, нежели повышала каталитическую активность платины, в то время как катодная поляризация увеличивала каталитическую активность более чем на 50%. [c.55]

    Интенсивно развиваются представления о катализе с участием переходных металлов . Каталитическое действие и своеобразие свойств и /-металлов, сплавов и образующихся активных поверхностных структур определяются местом (-элементов в периодической системе, электронным строением их атомов. За последнее десятилетие возрос интерес к применению в качестве гетерогенных катализаторов не только традиционных платиновых металлов, но и других металлов -элементов .  [c.185]

    Можно выделить только две реакции, в которых достаточно четко прослеживается связь между весом -состояний и каталитической активностью переходных металлов восьмой группы. Первая — это реакция гидрогенолиза алканов, для которой наиболее активны металлы, обладающие наибольшим весом -состояний, и активность практически линейно, на несколько порядков, меняется в зависимости от веса -состояний. Вторая — это реакция жидкофазного окисления олефинов на металлах платиновой группы. В этой реакции только Ки и КЬ, обладающие наибольшим весом -состояний, ведут полное окисление олефинов до воды и двуокиси углерода со 100%-ной селективностью. Для других металлов платиновой группы наблюдается образование продуктов неполного окисления олефинов — непредельных альдегидов и кислот. [c.154]


    Широкое применение платиновые металлы находят в качестве катализаторов. Так, способность платины сорбировать кислород позволяет использовать ее в качестве катализатора процессов окисления (контактный способ производства серной кислоты, каталитическое окисление аммиака и т. п.). Сродство палладия к водороду обеспечивает его каталитическую активность при разнообразных реакциях гидрирования. Значительные количества платины и палладия используются для изготовления ювелирных изделий. Платиновые металлы наряду с золотом и серебром служат в качестве валютных активов. [c.427]

    Несмотря на многие отдельные различия, платиновые металлы в общем похожи на элементы семейства железа. И те и другие являются серебристо-белыми или серыми металлами, характеризующими трудной летучестью, причем их температуры плавления и кипения изменяются довольно закономерно, уменьшаясь при переходе снизу вверх и слева направо (наибольшие они у осмия, наименьшие — у никеля). Для всех элементов триад характерна высокая каталитическая активность. Их ионы проявляют сильно выраженную тенденцию к комплексообразованию. Производящиеся от них соединения в подавляющем большинстве окрашены. [c.452]

    При сильном измельчении, когда размеры частиц начинают приближаться к размерам атомов и молекул, изменяется удельная каталитическая активность катализаторов [10, 25]. Как правило, их удельная активность ниже удельной активности этих компактных веществ [10, с. 79]. При изменении способа приготовления катализатора изменяется не только дисперсность, но и состав катализатора. В зависимости от исходного соединения и типа восстановителя, готовые катализаторы могут содержать водород, серу, фосфор, бор, углерод и другие вещества [10, с. 104]. Платиновые металлы содержат на поверхности примеси углерода, которые удаляются с большим трудом [28, с. 137]. Скелетные катализаторы могут содержать интерметаллиды и оксиды металлов, водород и другие вещества, поэтому удельная активность катализаторов, приготовленных различными способами, может быть различной. [c.32]

    Многие переходные металлы и их комплексы обладают каталитической активностью и широко применяются в промышленных каталитических системах, например, оксид ванадия(У) при окислении диоксида серы для получения серной кислоты, мелкодисперсное железо, оксид железа(Ш) - при синтезе аммиака. Особенно активны в этом отношении переходные элементы второго и третьего переходных рядов и, в частности, платиновые металлы. Так, мелкодисперсная платина и ее сплавы используются при окислении аммиака, металлорганические соединения родия и иридия - в разнообразных реакциях органического синтеза. В гл. 11 мы отмечали, что среди разнообразных механизмов действия этих и других катализаторов можно выделить несколько стадий, присущих каждому каталитическому процессу. Попытаемся теперь проследить за действием металлокомплексного катализатора на основных стадиях процесса  [c.373]

    Хорошо известно, что некоторые катализаторы, в частности катализаторы ри-форминга, имеют в своем составе один или несколько каталитически активных металлов, и в частности металлов платиновой группы, среди которых наиболее широко используются платина и иридий. Для этих катализаторов обычно используют носители, содержащие алюминий, чаще всего активную окись алюминия. [c.203]

    Изготовление водородных электродов. Представляется целесообразным описать подготовку платиновой основы водородного электрода и методы получения каталитически активной поверхности. Платиновая жесть 0,125 мм толщины разрезается на полоски площадью 1 см . Кусочек платиновой проволоки длиной 2 см приваривается к середине одного края пластинки. Для этого последнюю помещают на кусок асбеста и места, подлежащие сварке, нагревают узким кислородным пламенем. Раскаленный добела металл соединяют быстрым ударом молотка. [c.218]

    Окисление азота аммиака в окислы Сплав платины с 10% родия палладий обладает хорошей каталитической активностью в чистом виде, а также и в сплавах, но скоро становится ломким применение платиновых металлов на носителях, а также на тугоплавких металлах дает неудовлетворительные результаты 1584 [c.162]

    Мы не располагаем сопоставимыми количественными данными о каталитической активности нике.пя, кобальта и рения, но качественно активность этих трех металлов значительно ниже активности платиновых, причем никель активнее [c.32]

    Наиболее активными катализаторами гетерогенно-каталитического разложения Н2О2 являются платиновые металлы, причем активность самой платины намного выше активности остальных металлов платиновой группы. С другой стороны, платиновые металлы обладают ярко выраженной способностью к деструкции части адсорбированного на них органического вешества. Такая диссоциативная хемосорбция предопределяет накопление на поверхности катализатора наряду с физически адсорбированными молекулами исходного органического компонента и хемосорбиро-ванных частиц, представляющих собой осколки исходных молекул. [c.621]

    Все шесть металлов платшювой группы являются эффективными катализаторами гидрогенизации [19, 175], но обычно используются только платина и палладий. Каталитическая активность некоторых сплавов превышает аддитивный эффект обоих компонентов. Например, сплав меди и палладия (Р(1 > 47 %) и сплав меди с платиной (РЬ > 16 %) активны в такой же мере, как и сами металлы платиновой грунны [124]. [c.266]

    Кроме величины поляризации на скорость электродных процесс сов влияют некоторые другие факторы. Рассмотрим катодное восстановление ионов водорода. Если катод изготовлен нз платины, то для выделения водорода с заданной скоростью необходима определенная величииа катодной поляризации. Прп замене платинового электрода на серебряный (при неизменных прочих условиях) для получения водорода с прежней скоростью понадобится большая поляризация. При замене катода на свинцовый поляризация потребуется еще большая. Следовательно, различ)1ые металлы обладают различной каталитической активностью по отношению к процессу восстановления ионов водорода. Величина нс-ляризацни, необходимая для протекания данного электродного процесса с определенной скоростью, называется перенапря жением данного электродного процесса. Таким образом, нерс напряжение выделения водорода на различных металлах различно, [c.303]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]


    Платннозые металлы обладают исключительно высокой каталитической активностью. Известны тысячи реакций, которые они ускоряют. Обычно их используют в высокодисперсном состоянии, платину — в виде так называемой платиновой черни, которую получают химическим или электрохимическим восстановлением хло-роплатината. В качестве катализаторов чаще всего применяют платину и палладий. Последний, в частности, является мощнейшим катализатором гидрирования, особенно активен коллоидный палладий. [c.574]

    Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Оксид железа дешевый, не отравляется мышьяком, но при обычном составе газа (7% SO2 и 11% О2) он проявляет каталитическую активность только выше 625°С, т. е. когда Jip<70%, и поэтому применялся лишь для начального окисления SO2 до достижения Хр 50—60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина он оказался наиболее рациональным, и только он применяется в производстве серной кислоты в СССР. Ванадиевая контактная масса содержит в среднем 7% V2O5 активаторами являются оксиды щелочных металлов, обычно применяют активатор К2О носителем служат пористые алюмосиликаты или диоксид кремния. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца. При катализе оксид калия превращается в K2S2O7, а контактная масса в общем представляет собой пористый носитель, поверхность пор которого смочена пленкой раствора пяти-оксида ванадия в жидком пиросульфате калия. [c.129]

    Деалкилирование толуола впервые осуществлено на никелевых катализаторах. Позднее было установлено, что указанные реакции катализируют также металлы платиновой группы, нанесенные на окись алюминия. В одном из исследований [195] каталитическую активность этих металлов, нанесенных на у = А120з, сравнивали при 300—500 °С и установили, что они катализируют реакцию гидродеалкилирования толуола. Установлено, что при 350—560°С и атмосферном давлении селективность этой реакции определяется природой металла и при глубине превращения толуола до 50% изменяется от 99 до 80% (мол.). При эквиатомном содержании металлов на носителе (6 моль-атом Ме на 1000 моль у-Л Оз) наиболее активен в этой реакции родий, а наименее активны платина и палладий. При 490°С активность катализаторов изменяется в ряду ЯЬ>1г>08>Р(1>Ки>Р1. [c.293]

    Как уже указывалось выше, в общем случае адсорбция органических веществ на платиновых металлах сопровождается дегидрированием, разрывом С—С-связей, самогидрированием, взаимодействием хемосорбированных фрагментов друг с другом, с молекулами растворителя и компонентами раствора фона. Возможность участия растворителя и компонентов раствора является наиболее важной отличительной особенностью хемосорбционных процессов на каталитически активных металлах в растворах от таковых в газовой фазе. Стехиометрическое уравнение хемосорбции органического вещества состава СхН1,02 в водном растворе можно записать в виде [c.99]

    Требованию высокой активности для многих электрокаталитических процессов и одновременно коррозионной устойчивости отвечают металлы платиновой группы и сплавы на их основе. Эти катализаторы являются весьма эффективными для водородного и кислородного электродов электроокисление углеводородов с достаточно высокими скоростями при низких температурах удалось пока осуществить лишь на платиновых металлах. Широкому практическому использованию платиновых катализаторов мешают их дороговизна и дефицитность. Поэтому перед электрокатализом стоят задачи разработки путей наиболее эффективного использования платиновых катализаторов и поиска менее дорогих и дефицитных электродных материалов. Более эффективное использование платиновых металлов достигается увеличением их дисперсности, нанесением платиновых осадков на различные носители с электронной проводимостью и развитой поверхностью (например, на углеродистые материалы). Резкое увеличение каталитической активности иногда достигается при использовании комбинированных катализаторов. Так, на дисперсных платино-рутение-вых катализаторах скорость электроокисления метанола оказывается выше на три порядка по сравнению со скоростью процесса на платине или рутении, взятых в отдельности. [c.264]

    Наряду с гомогенно-каталитическими методами гетерогеннокаталитические методы очистки сточных вод с использованием Н2О2 как окислителя скрывают в себе широкие возможности. Особого внимания заслуживает гетерогенно-каталитический вариант, в котором в качестве катализатора используются платиновые металлы. Гетерогенно-каталитический распад Н2О2 на платине, палладии и родии в растворах, содержащих органическое вещество, часто сопровождается интенсивным окислением органических веществ с выделением диоксида углерода как конечного продукта окисления. При этом соотношение между промежуточными и конечным продуктом окисления зависит от ряда факторов, в частности от соотношения концентрации пероксида водорода и органического компонента, природы активной фазы, ха--рактер подложки, pH раствора, температуры и др В этой связи заслуживает внимания гетерогенно-каталитическая система катализатор (кат) — Н2О2 — органический компонент (К). [c.620]

    Способность платиновых металлов к абсорбции различных газов является одной из причин их каталитической активности во многих химических процессах. По отношению к химическим воздействиям платиновые металлы весьма устойчивы. В компактном состоянии большинство из них (кроме палладия и платины) нерастворимо не только в кислотах, но и в царской водке . Платина- растворяется в царской водке с образованием платинохлористоводородной кислоты Н2[Р1С1б]  [c.497]

    Жуков, Глаголева и Струкова [384] сравнили каталитическую активность платиновой, иридиевой, родиевой и палладиевой черни при каталитическом разложении перекиси водорода. Металлы электролитически осаждались в виде тонких слоев на золоте, и константы скорости на единицу поверхности оказались практически равными для всех металлов за исключением черни родия и палладия. Родиевая чернь показала несколько большую активность, чем гладкий слой металла, палладиевая чернь заметно изменилась в процессе и поэтому была мало активной гладкий слой палладия существенно отличался от гладких слоев других металлов платиновой группы. [c.262]

    Одним из существенных недостатков палладиевых покрытий в электргяехинке является его высокая каталитическая активность н ад сорбционная способность по отношеиню к водороду и органическнм веществам, что может оказывать большое влияние на повышение переходного сопротивления Этим, а также меньшей по сравнению с другими металлами платиновой группы химической стойкостью ограничивается его применение в промышленности. [c.139]

    Катализаторы на основе металлов платиновой группы (чаще и Р(1) применяют для очистки водородсодержащих газов от кислорода. Они работают даже при комнатной температуре и объемной скорости 10 ООО—20 ООО ч . Так же, как и на никелевых катализаторах, процесс тордюзится окисью углерода, которая, адсорбируясь на поверхности, снижает каталитическую активность. [c.402]

    Все платиноиды — благородные металлы, не корродируют, растворяются (кроме 1г) только в царской водке с образованием хлорплатинатов. Все они, особенно Р1 и Р(1, обладают высокой каталитической активностью в мелкодисперсном состоянии (платиновая чернь и коллоидный палладий). Они очень активно поглощают водород и потому являются прекрасными катализаторами всех реакций с его участием. Особенно активно растворяет водород палладий. Содержание водорода в нем при обычном давлении отвечает РсХгН, с повышением давления содержание водорода доходит до PdH. [c.189]

    С гидрофобностью применяемых подложек необходимо применять дисперсионную среду суспензии, хорошо смачивающую катализатор, подложку и связующее (спирты, кетоны и т. д.). Такой метод позволяет наносить достаточно равномерно малые количества катали - ".-тора (от I г/м ). В качестве катализатора, как правило, используется платиновая чернь, обладающая комплексом необходимых свойств. Исследования показали, что ряд органических комплексов переходных металлов типа фталоционинов Ре, Со, Мп, обладающих полупроводниковыми свойствами, проявляет высокую каталитическую активность в реакщ1и электровосстановления кислорода, в том числе и в кислом электролите, а для электроокисления водорода в том же электролите с успехом используется карбид вольфрама УС. Однако в литературе отсутствуют сведения о применении указанных катализаторов в ТЭ с ИОМ. [c.308]

    II родиевых покрытий, и износостойкостью, превышающей износостойкость родиевых и в десятки раз серебряных покрытий. Палладий стоек к воздействию влажной атмосферы и многих агрессивных сред, не тускнеет на воздухе при температуре до 300 С, обладает высокими каталитической активностью и способностью к насыщению водородом (до 900 объемов на 1 объем металла), хорошо растворим в царской Еодке, а при нагревании — в HNO3 и слабо — в концентрированной H2SO4, сильно корродирует в НС1 и НдР04, взаимодействует с влажными С1а и Вг , может быть переведен в раствор электрохимическим растворением в H I. Из металлов платиновой группы он менее дефицитен, и стоимость его ниже, чем других металлов. [c.230]

    Благородные металлы, особенно платина и палладий, проявляют высокую каталитическую активность во многих химических реакциях. Платиновые катализаторы щироко используют в процессах нефтепереработки (например, в платформин-ге) палладиевые катализаторы нащли применение в процессах гидрирования непредельных органических соединений. Наряду с этим металлы платиновой группы проявляют высокую активность в реакциях глубокого окисления органических веществ и оксида углерода, и по своей активности (в расчете на один атом активного вещества) они значительно превосходят другие катализаторь . [c.35]

    Водородный электрод не может быть применен в присутствии некоторых ядов — веществ, которые нарушают обратимость электродного процесса [уравнение (1Х.2)]. К ним относятся ион цианида, сероводород, соединения мышьяка и катионы некоторых металлов, например, серебра или ртути. Мешают также некоторые анионы. Нитраты в растворах сильных кислот могут восстанавливаться до аммиака, но они не вызывают осложнений в растворах слабых кислот [3]. Нитрофенолы, бензойная кислота и другие ароматические соединения восстанавливаются водородом в присутствии тонкоизмельченной платины. Восстановление ускоряется при повышении температуры, но его можно замедлить, если применять тонкослойные электроды [4]. В ряде случаев хорошие результаты дают металлы с меньшей каталитической активностью, чем у платины. Электроды, покрытые тонко диспергированным палладием, обеспечивают вбспроизводимые и постоянные значения потенциалов в растворах кислых фталатов калия и натрия, в которых из-за восстановления фталата черненый платиновый электрод не пригоден [5] .  [c.211]

    В дальнейшем изучение [87] активности никелевого катализатора в процессах гидрогенизации и дегидрогенизации показало, что член В в уравнении Шеррера при нанесении в виде функции от 1 / os f дает не прямую линию, а скорее кривую, подчиняющуюся уравнению третьего порядка. Отсюда был сделан вывод о применимости уравнения Шеррера лишь для определения размера частиц. Наблюдалась и обратная ожидаемой зависимость между расширением линий и каталитической активностью, а именно уменьшение ширины линий соответствовало увеличению каталитической активнссти. Хердт [197], применив рентгеновское исследование, нашел следующие размеры частиц у металлов платиновой группы платиновая чернь 4,80-11,27 палладиевая чернь 4,98-11,10 родий 2,20 до, иридий 1,16 до, рутений 1,92-3,61 до, осмий 1,70-2,70 до. [c.246]

    Бредиг и Алло лис [69] произвели рентгеновское исследование строения решетки и среднего размера частиц в слоях, полученных при катодном диспер гировании платины, палладия и никеля на стеклянных пластинках. Чередующиеся слои платины и палладия, диспергированные при давлении десять и более миллиметров водорода, при применении для гидрогенизации этилена оказались почти неактивными. Рентгеновское исследование показало, однако, значительное увеличение решетки, указывающее на высокое содержание водорода, что повидимому значительно снижает и даже полностью уничтожает активность платины и палладия. При диспергировании в кислороде палладиевые и платиновые катализаторы образуют окисные слои, которые сначала неактивны, но при последующем восстановлении становятся очень активными. Кристаллический никель гексагональной формы, диспергированный в водороде, оказался при гидрогенизации этилена неактивным до 360°. Каталитически активные металлы образуются, ксгда окисление сопровождается последующим восстановлением водородом. Отсюда можно сделать вывод, что чистые металлы являются каталитически активными веществами. [c.247]

    В мягких же условиях рений на керамических носителях обладает низкой активностью [271]. Так, циклогексен при 150° С практически не присоединяет водород, а при 250° С гидрирование идет уже с заметной скоростью. Бензол на том же катализаторе до 150° С не гидрируется, а при 200° С вместо гидрирования начинается частичное его разложение. Из нитробензола при 250° С образуются значительные количества анилина, а при 266° С начинается сильное разложение нитробензола и, как предполагают авторы, окисление им рения в высшие окислы. В работе [272] импульсным хроматографическим методом при 100—235° С была изучена каталитическая активность рения, технеция, рутения, платины и палладия, нанесенных на 5102 и на - -А120,, в реакции гидрирования бензола. Технеций и рений проявляли активность в указанном процессе, хотя скорость на них была ниже, чем на металлах платиновой группы Ки > > Тс Рс1 > Ке. Катализаторы, в которых носителем была 7-А12О3, оказались менее активными, чем металлы, нанесенные на 5102-Мелко раздробленный рений ведет реакцию гидрирования этилена при 150° С со степенью превращения до 80% [273], в то время как Ке на 8105,, полученный восстановлением перрената калия, в той же реакции обладает весьма нестабильной активностью [274]. [c.94]

    Электронные структуры таких металлов платиновой группы, как Pt и Ru, включают недостроенные с(-орбитали, связанные, по Бонду [45], с проявлением каталитической активности (электронная конфигурация Ru — 4d 5s , Pt — 4/i 5d4si). [c.171]

    Например, согласно [253], цинк начинает окислять водород только после длительной выдержки в реакционной смеси. Так же медленно устанавливается стационарная каталитическая активность меди. Скорость окисления водорода на Ре, Со, N1 особенно резко зависит от состава реакционной смеси при повышении концентрации кислорода скорость окисления водорода заметно падает, хотя фаза окислов, в отличие от таких металлов, как 2п, Т1, V, Сг, Мп, здесь не образуется. Подобные изменения активности металлов при варьировании концентраций реагирующих веществ, так же как и гистерезисные явления при окислении водорода на платине и некоторых других металлах, связаны, очевидно, с поглощением реактантов катализаторами [264]. Например, уменьшение скорости окисления водорода на никеле сопровождается изменением порядка по кислороду от первого к нулевому, что сеи-детельствует о насыщении поверхности катализатора кислородом. Именно это обратимое насыщение поверхности слоя контакта и обусловливает столь резкий спад активности (у N1 и Ре — в 12,5 раза, у Со — в 3,4 раза). В зависимости от природы металла этот спад наступает при разных концентрациях кислорода в смеси (для массивных Ре, N1, Со — при 0,06 0,1 0,3% соответственно). Существенное значение имеет также и структура катализатора. Например, на пористом катализаторе, содержащем 40—70% N1, падение скорости окисления водорода не наблюдается даже при концентрации кислорода 2,5% и температуре 40° С [297]. Это обусловлено протеканием реакции на пористых контактах в данных условиях во внешнедиффузионной области, исключающей насыщение поверхности катализатора кислородом. Несмотря на то что реакция взаимодействия кислорода с водородом в избытке последнего хорошо протекает при комнатной температуре на ряде контактов, для очистки водородсодержащих газов от примеси кислорода наиболее широко применяются никелевые катализаторы. Это связано, с одной стороны, с тем, что никель намного (на 3 порядка) активнее С03О4, а с другой — с тем, что он лишь в 5—6 раз менее активен, чем дорогие и дефицитные платина и палладий [296]. В отличие от металлов подгруппы железа, платина и палладий эффективно окисляют водород и в его стехиометрической смеси с кислородом [295]. В избытке же кислорода проявляется различие между этими металлами. Активность палладия падает с ростом концентрации кислорода, в то время как скорость окисления водорода на платине до 25 % -го избытка кислорода даже растет. Поэтому для низкотемпературной очистки инертных газов от примеси кислорода, когда в очищаемую смесь добавляется практически стехиометрическое количество водорода, целесообразно использовать палладиевый катализатор, а для очистки кислорода от водорода пригодны только платиновые контакты [296]. [c.245]


Смотреть страницы где упоминается термин Платиновые металлы каталитическая активность: [c.58]    [c.379]    [c.335]    [c.324]    [c.230]    [c.215]    [c.211]    [c.65]    [c.593]    [c.234]   
Основы общей химии Том 3 (1970) -- [ c.173 , c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Металлы каталитическая активность

Платиновые металлы

Ряд активности металлов



© 2025 chem21.info Реклама на сайте