Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие кислотно-основное в неводных растворителях

    Важной характеристикой растворителя, влияющей на механизм реакции, является диэлектрическая проницаемость, от которой в первую очередь зависит состав частиц, на которые распадаются вещества-электролиты в растворе (разд. 34.2.4). Кроме того, диэлектрическая проницаемость растворителя влияет на процесс диссоциации, а также кислотно-основное равновесие. Так, рекомбинация ионов в нейтральные молекулы происходит преимущественно в растворителях с низким значением диэлектрической проницаемости г, а увеличение е способствует их диссоциации. Выбор подходящего растворителя или их смеси позволяет получить любое значение е среды, в которой протекает реакция. Этим широко пользуются при титровании в неводных растворителях (разд. 39.9). [c.457]


    Неводные растворители и смешанные растворители на их основе широко применяют в практике аналитической химии. Свойства растворителя существенно влияют на растворимость вещества, его кислотно-основные свойства и кислотно-основные равновесия в растворе. Одно и то же соединение в зависимости от применяемого растворителя может быть а) кислотой, основанием, амфотерным или нейтральным соединением, б) сильным или слабым электролитом. [c.31]

    Выше мы ограничились немногими примерами, показывающими влияние особенностей растворителя на кислотно-основное равновесие в растворе. Многие химики, имеющие дело только с водными растворами, недостаточно отчетливо представляют себе, насколько велики бывают изменения, сопутствующие переходу от водных к неводным растворам, если в протолитическом отношении растворитель сильно отличается от воды. Таким растворителем является, например, жидкий аммиак. Обзор, посвященный кислотам и основаниям в жидком аммиаке, представит для читателя интерес в том отношении, что конкретизирует те общие высказывания и дискуссии, с которыми он познакомился на страницах книги. [c.261]

    В разд. 3.3.1 и 4.2.1 уже рассматривались равновесия типа кислота Бренстеда — основание Бренстеда, в которых сам растворитель участвует как кислота или как основание. В этом разделе будут приведены примеры влияния растворителей на такие реакции переноса протона, в которых растворитель непосредственно не участвует. Интерес к исследованию такого рода кислотно-основных равновесий в неводных растворителях стимулировали основополагающие работы Барроу и др. [164], изучавших кислотно-основные реакции между карбоновыми кислотами и аминами в тетрахлорметане и хлороформе. [c.160]

    На современном этапе развития химии растворов все возрастающий интерес проявляется к кислотно-основным равновесиям в смешанных растворителях и неводных средах. Несмотря на то, что величины pH могут быть определены непосредственно во многих подобных средах, интерпретация этих величин с точки зрения гомогенного равновесия в растворах в общем бесплодна. Количественные аспекты понятий кислотности и основности и смысл шкалы, предлагаемой для определения активности ионов водорода в таких средах, которые являются лишь частично водными, рассмотрены здесь более детально, чем прежде. Сделаны некоторые предложения для стандартизации шкалы pH, применяемой в смешанных растворителях. [c.9]

    Теория кислот и оснований Бренстеда — Лоури, которая более подробно будет рассмотрена в гл. 4 в связи с описанием неводных растворителей, может быть использована также и для рассмотрения водных растворов. Если все классы доноров протона рассматривать как кислоты, то нет необходимости делать какое-либо различие между ионизацией уксусной кислоты и гидролизом иона аммония. Подобным же образом поведение иона ацетата как основания ( гидролиз ) в принципе идентично поведению аммиака как основания ( ионизация ). Таким образом, количественную трактовку кислотно-основного равновесия можно значительно упростить, если не учитывать концепцию гидролиза, в которой нет необходимости. В соответствующем месте мы проведем сопоставление наших уравнений с уравнениями, вытекающими из классической теории, специально для того, чтобы подчеркнуть преимущества этой более современной концепции. [c.36]

    Если применять тяжелую воду, то очень быстро обменивается водород в связях О—Н, N—Н, S—И, Hal—Н, но обычно не удается осуществить обмен в связях С—Н, наиболее перспективный для решения многих вопросов теоретической органической химии. Легко заметить, что обмен водорода на дейтерий тяжелой воды происходит лишь в связях С—Н тех веществ, которые в водном растворе представляют собой слабые кислоты или слабые основания, причем обмен катализируют сильные основания и кислоты. Ингольду [14] удалось заменить водород в некоторых углеводородах на дейтерий, действуя на них дейтеросерной кислотой. Эти факты навели на мысль о кислотно-основной природе водородного обмена в растворах, из которой следовало, что если усилить кислотные или основные свойства углеводородов и их производных, применяя соответствующие растворители и катализаторы, то водородный обмен в СН-связях станет обычным явлением [15]. Знание закономерностей кислотно-основного равновесия и катализа в неводных растворах помогло найти растворители и катализаторы, позволившие значительно расширить самую область реакций водородного обмена. Кроме того, знание закономерностей кислотно-основного взаимодействия помогло предвидеть, какие факторы должны влиять па водородный обмен. [c.8]


    КИСЛОТНО ОСНОВНОЕ РАВНОВЕСИЕ В НЕВОДНЫХ РАСТВОРИТЕЛЯХ [c.75]

    Мы уже описали ряд приемов определения очень слабых кислот и оснований (с АГ < 10 ) и смесей электролитов с близкими константами (< 10 ). Это метод обратного тшрования, метод замещения, усиление кислотных свойств вследствие комплексообразования и др. Используют также метод, основанный на усилении или ослаблении донорно-акцепторной способности кислот или оснований в неводных шш смешанных водно-органических средах. Вспомним, что кислотные свойства усиливаются в протофильных растворителях и подавляются в протогенных (см. разд. 6.1.3). Аналогично, основные свойства усиливаются в протогенных и ослабляются в протофильных растворителях. Таким образом, путь выбора растворителя, казалось бы, нащупан. Действительно, константу равновесия реакции титрования (например, кислоты основанием) [c.58]

    Большинство неводных кислотно-основных титрований проводят в растворителях с относительно низкими диэлектрическими проницаемостями. В таких растворителях все вещества ионного характера (включая соли, кислоты и основания, являющиеся сильными электролитами в воде) существуют в основном в виде недиссоциированных ионных пар. Напри.мер, для такой соли как бромид натрия в равновесии с ионными парами Na+Br по реакции [c.173]

    Кислотно-основные индикаторы существуют в растворителях главным образом в виде ионных пар, так как большинство растворителей имеет низкую диэлектрическую проницаемость равновесия между компонентами ионных пар осложняются из-за разницы в заряде у различных форм индикатора. Изменение окраски индикатора в неводном растворителе часто не соответствует изменению его в воде. Возможно, это связано с образованием ионных пар и с другими изменениями в структуре или в электронном строении молекулы индикатора, вызванными влиянием соседних молекул растворителя. Некоторые индикаторы легко [c.332]

    Динамические равновесия в процессе кислотно-основного титрования в среде неводных растворителей 220 [c.4]

    Фундаментальными исследованиями уксусного ангидрида как растворителя занималась Евстратова с сотр. [187—193]. Она сформулировала критерии, определяющие скачок потенциала при кислотно-основном титровании [194—196], разработала теоретические основы потенциометрического метода титрования, определила ионное произведение УА, исследовала кислотно-основное равновесие в УА, измерила константы диссоциации кислот и органических оснований в неводных растворах (и в том числе в УА). [c.56]

    ДИНАМИЧЕСКИЕ РАВНОВЕСИЯ В ПРОЦЕССЕ КИСЛОТНО-ОСНОВНОГО ТИТРОВАНИЯ В СРЕДЕ НЕВОДНЫХ РАСТВОРИТЕЛЕЙ [c.220]

    Кислотно-основные реакции, протекающие в среде оксида дейтерия, имеют общие закономерности с указанными реакциями в водных системах, поэтому они включены в этот раздел, рассматривающий кислотно-основное равновесие в воде, хотя с точки зрения химического поведения их следовало бы рассматривать в разделе, посвященном неводным растворителям. При некоторых исследованиях, например, при изучении изотопного эффекта дейтерия, требуется измерять pD как показатель кислотности растворов в тяжелой воде. Стеклянные злектроды реагируют на изменение концентрации иона дейтерия в соответствии с законом Нернста [47, 48], поэтому обычное сочетание стеклянных и каломельных электродов может послужить основой эмпирического определения [49] величины pD [c.65]

    Огромное количество литературы посвящено применению неводной титриметрии, в то время как данных, характеризующих основные константы равновесия во многих растворителях, исключительно мало. Мы не сможем дать здесь исчерпывающий перечень всех возможных применений неводной титриметрии, читатель может найти нужные ему сведения в монографиях [42—46] и в обзорных статьях [47, 48] отдельные аспекты проблемы рассмотрены ниже. Данные о новых практических разработках в этой области следует искать в литературе, посвященной органической химии, нефтехимии и фармацевтической химии. Практические рекомендации можно извлечь из ранних трудов [42, 43, 49]. Большинство исследований направлено на выяснение стехиометрических соотношений кислотно-основных реакций, непригодных для аналитических целей в водной среде, а также на сравнение результатов, полученных при использовании различных индикаторов, с [c.132]

    Существенное значение имеет распределение самого экстракционного реагента между неводным растворителем и водой. Кислотно-основное равновесие в растворе реагента НЬ [c.302]

    Углубленное изучение кислотно-основных равновесий в неводных растворителях должно привести к лучшему пониманию роли растворителя в изменении этих равновесий. Вообще в тех случаях, когда речь идет о количественном изучении проблемы, предпочтительно иметь дело с величинами основности фосфинов, определенными в нитрометане. Тем не менее, исследование основности в водных средах или в средах, подобных водным, представляется важным по ряду других причин. [c.134]

    В дальнейших разделах данной работы приводится теоретическая интерпретация этого уравнения и рассмотрены пределы его применимости здесь же дадим лишь основные сведения. Уравнение подобного типа оказалось верным (по крайней мере приближенно верным) для каждой из реакций, в которых исследовались сходные катализаторы, причем величины к а К часто изменялись на несколько порядков. Величины О, а и р различны для разных реакций. Величина О значительно изменяется при замене растворителя и изменении температуры, а а и р изменяются гораздо меньше. Если катализаторы значительно отличаются друг от друга (в особенности по величине заряда), то параметры уравнения также будут различны. Уравнение того же типа применимо для каталитических реакций в неводных растворителях, даже апротонных. В таких случаях нет возможности выразить силу кислот и оснований через константы диссоциации в данном растворителе, но можно воспользоваться равновесием с добавленным веществом кислотно-основного характера, например с индикатором. Часто подобные измерения равновесия бывают неосуществимы, и константы диссоциации в воде обычно используются для сравнения при каталитических измерениях в других растворителях. Так как относительная сила кислотно-основных систем одного и того же заряда мало изменяется с переменной растворителя, то при применении констант диссоциации в воде форма уравнения (9) не изменяется, хотя, конечно, величина О приобретает другое значение. [c.16]

    Кислотно-основное равновесие в неводных растворителях. Согласно теории кислот и оснований [см. реакцию (5), стр. 246], сила кислоты Ai (ее степень ионизации) является функцией силы основания Вг (обычно растворителя), которому передается протон кислоты. До сих пор при изложении основное внимание было сосредоточено на системах, в которых основанием Вг служила вода. В воде (вследствие эффекта выравнивания, свойственного растворителю, см. стр. 255) более сильные кислоты, чем Н3О+ (р/С < 0), практически полностью ионизированы (сильные кислоты), а основания сильнее иона ОН (р/Ск > 14) полностью гидролизованы. [c.263]

    Нередко (а при выборе растворителя для проведения неводного титрования — практически всегда) классифицируют растворители, исходя из их способности принимать участие в кислотно-основных равновесиях, т. е. вводят классификацию, основанную на кислотноосновных свойствах растворителей. [c.35]


    Следовательно, говоря о кислотности или основности в неводных растворах или о силе электролитов, необходимо иметь в виду, что равновесие реакции протонизации сильной кислоты в водном растворе (е=78,54) (когда ассоциация ионов и образование ионных пар чрезвычайно малы) смещается в обратную сторону в среде растворителя с малой б, в котором преимущественно образуются ионные пары. Разумеется, большое значение имеет химическая природа растворителя. Роль растворителя при образовании ионных пар подробно изложена в [55, 64]. [c.217]

    При переходе от одного протрлита к другому в пределах одного класса соединений -(/2 (рЛ д сс) нейна. Эта зависимость позволяет судить о дифференцирующем действии растворителей. Чем круче прямая, тем более высоким дифференцирующим действием обладает растворитель. По сравнению с рК величина -1/2 более полно отражает специфику кислотно-основного равновесия в неводной среде. Приведенные ниже данные иллюстрируют изменение /2 трех ортозамещенных бензойной кислоты относительно , 2 бензойной кислоты. Значения рЛ д ны для водных растворов соответствующих кислот  [c.92]

    Первые четыре главы посвящены подробному изучению определения шкалы pH, условиям, которые позволяют достигнуть подходящего компромисса между теорией и экспериментом, а также стандартам pH. В главах V и VI обсуждены с точки зрения теории и практики буферные растворы и индикаторные методы, Главы VII и VIII посвящены кислотно-основным равновесиям и измерениям в неводных и смешанных растворителях. В главе IX описываются свойства водородного электрода, жидкостные границы и вспомогательные электроды, а в отдельной главе X дан обзор свойств и поведения стеклянных электродов. [c.9]

    Поскольку обработка и интерпретация далных является столь жизненно необходимыми для всех видов химических экспериментов, в главе 2 детально описывается, как выразить точность и правильность аналитических результатов и как оценить погрешности в измерениях с цриложением строгих математических и статистических концепций к тому же этот материал обеспечивает прочные основы для обсуждения хроматографических разделений в более поздних главах. В главе 3 обсуждаются вопросы по Ведения раствор.енных веществ в водной среде и некоторые принципы химического равновесия, на которые опирается материал последующих разделов. Главы 4 и 5 охватывают кислотно-основные реакции в водных и неводных системах такой подход необходим для количественной оценки р астворимости осадков в различных растворителях и различных видов химических взаимодействий, возникающих в аналитических методах, которые основаны на комплексообразовании и экстракции. В главе 6 рассматривается теория и аналитическое применение реакций комплексообразования и основные положения использования этих общих представлений в таких аналитических методах, как прямая потенциометрия, кулонометрическое титрование, полярография и хроматография. Аналитические методы, основанные на образовании осадков, обсуждаются в главах 7 и 8. [c.19]

    Таким образом, изменение природы растворителя может существенно влиять на равновесие при растворении вещества, что может облегчать количественное определение. Интерес к титрованию в неводных средах продолжает возрастать, однако используемые методы разработаны главным образом для кислотно-основных систем. Возможность использования неводного растворителя сл,едует рассматривать всякий раз, когда приходится работать с очень слабой кислотой или основанием. Последние монографии, посвященные этому вопросу, содержат достаточное количество информации о таких системах. [c.312]

    Закономерности коррозионных процессов в неводных (органических) средах опредёляются физико-химическими свойствами растворителей [1—3L Последние делят на апротонные, не участвующие в кислотно-основном равновесии и реакциях, связанных с переносом протона, и протолитические трех групп (табл. ИЛ) протогенные, кислые (способность к выделению протона выше способности к присоединению) протофйльные, основные (акцепторные свойства по отношейию к протону превалируют над до-норными) амфотерные (обладают кислотными и основными свойствами). [c.335]

    Исследований, посвященных изучению кислотно-основных равновесий в неводных и органических средах, значительно больше, чем работ, связанных с исследованием окислительно-восстановительных процессов в тех же средах. Между тем, применение смешанных растворителей, как уже подчеркивалось, существенно расширяет границы изучения комплексообразования методами редоксметрии. В нашем распоряжении уже имелись наблюдения о поведении ряда окислительно-восстановительных систем в водноспиртовых, водно-ацетоновых и других подобных средах. Нам представлялось своевременным в более строгой форме обратиться к вопросу о стандартизации потенциалов в смешанных растворителях. [c.33]

    Существует много явлений, которые неадекватно описываются в рамках первоначальной концепции солевых эффектов, но в водных растворах имеется широкая область концентраций, где первичные солевые эффекты можно исключить, а вторичные удовлетворительно описать теорией межионного взаимодействия. Так обычно обстоит дело в случае растворов с ионной силой меньшей, чем 0,1, не содержащих многозарядных ионов, а также ионов Ag+ и Т1+. Иное положение в неводных растворителях с низкой диэлектрической постоянной, где электростатическое взаимодействие гораздо сильнее. Мы уже видели в гл. 4, какое большое влияние оказывает на кислотно-основные равновесия в неводных растворителях образование ионных пар. Как следует из работу Уинстейна и его сотр. [8], образование ионных пар играет также важную роль в реакциях сольволиза многих органических соединений, приводя к большим и специфическим солевым эффектам. В определенной степени сходную ситуацию наблюдал Истхэм [9] при изучении катализируемых основанием мутаротаций тетраметил- и тетраацетилглюкозы в пиридине и нитрометане. Каталитический эффект незаряженных оснований очень мал, но он значительно увеличивается при введении целого ряда солей. Например, 0,02 М раствор ЫС104 повышает каталитический эффект пиридина в 10 раз. Однако величина эффекта существенно меняется при переходе от одной соли к другой. В отсутствие соли механизм реакции (которая протекает через промежуточное образование альдегидной формы глюкозы) можно было бы изобразить в [c.165]

    Так как растворители могут оказывать влияние на положение равновесия, успешность определений, проводимых в неводных средах, зависит от выбора растворителя. Особенно большое значение выбор растворителя имеет при титровании очень слабых оснований или кислот, так как с помощью некоторых нейтральных растворителей, например ацетона, метилэтилкетона и метилизобутилкетона, можно дифференцировать слабый основной или кислотный характер соединений. Растворители сильно кислотного характера, например уксусная кислота, или сильно основного характера, например этилендиамин, не только повышают силу слабых или умеренно сильных оснований и кислот, но и выравнивают различия. Это называют выравнивающим эффектом. Именно поэтому при титровании органггческих соединений все чаще используют смеси растворителей. [c.97]

    Равновесные концентрации ионов могут быть рассчитаны, если известна концентрация титруемого раствора, количество добавленного титранта и значения констант диссоциации. Когда в основу определения положено кислотно-основное взаимодействие, химические равновесия характеризуются константами диссоциации кислот, оснований, амфоли-тов, а в неводных растворах также константами диссоциации солей. Если в процессе титрования образуются малорастворимые осадки или комплексные ионы, состояние равновесий обусловливается значениями произведений растворимости осадков и констант нестойкости комплексов. При использовании реакций окисления — восстановления равновесия зависят от окислительно-восстановительных потенциалов и т. д. В ряде случаев существенное влияние в общей системе равновесий оказывает константа автопротолиза растворителя. [c.98]

    Влияние кислотности раствора на экстрагпрованне комплекса довольно сложно. Основные черты этого влияния заключаются в следующем является не очень сильной кислотой при введении в раствор посторонней кислоты увеличивается количество молекулярной НЗОМ, последняя же хорошо извлекается органическим растворителем. Таким образом, увеличение кислотности раствора приводит к удалению из водной фазы ионов родана. В соответствии со сказанным выше это сдвигает равновесие в водной фазе в сторону образования комплексов с меньшим числом координированных групп, т. е. комплексов, которые, как было показано выше, слабо извлекаются этилацетатом. Таким образом, увеличение кислотности раствора должно, с одной стороны, действовать аналогично уменьшению концентрации ЗСК в растворе, т. е. ухудшать экстрагирование комплекса, особенно при небольших начальных концентрациях роданида (см. фиг. 4, кривая 1). С другой стороны, увеличение кислотности в растворе может действовать благоприятно. Совершенно очевидно, что в неводную фазу не может переходить только анион извлекается комплексная кислота НРе(ЗСК)4 или соль КН4Ре(ЗСК)4. Если кислота HFe(S N)4 достаточно сильная, то Н+-ион может экстрагироваться лишь по электростатическим причинам (электронейтральность раствора). В этих случаях кислотность водной фазы, при количествах кислоты, необходимой для устранения гидролиза соли, железа и для образования НГе(ЗС1Ч)4, не будет иметь больщого значения. Однако кислота НРе(ЗС]Ч)4 может быть и не очень сильной, т. е. Н+-ИОП также достаточно прочно связан с комплексным анионом. В этом случае экстрагирование будет заметно облегчаться присутствием в водной фазе Н+-ионов, сдвигающих вправо равновесие образования молекулы слабой кислоты Н+4- Ре(ЗСК),-= НРе(ЗСМ)4. [c.170]


Смотреть страницы где упоминается термин Равновесие кислотно-основное в неводных растворителях: [c.128]    [c.269]    [c.135]    [c.84]    [c.125]    [c.36]   
Общая химия (1968) -- [ c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Кислотно-основное

Кислотно-основные равновесия

ЛИЗ кислотно основной

Неводные растворители

Равновесие кислотно-основное

Растворители основные



© 2025 chem21.info Реклама на сайте