Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

углерод нуклеофильными реагентами

    Для осуш ествления переходного состояния реакции 3 2 накопление объемистых заместителей вблизи центрального углеродного атома является неблагоприятным фактором, так как это затрудняет подход к атому углерода нуклеофильного реагента. Поэтому реакции 3 2 предпочтительно реализуются при первичных и вторичных, но не третичных углеродных атомах. [c.169]

    В реакции нуклеофильного замещения при насыщенном атоме углерода нуклеофильный реагент У вытесняет связанный с углеродом атом или группу атомов X с обоими электронами связи  [c.156]


    В реакциях нуклеофильного замещения при насыщенном атоме углерода нуклеофильный реагент Y замещает связанный с углеродом атом или группу атомов X при этом Y предоставляет пару электронов для возникающей связи, а X уходит с парой электронов субстрата  [c.250]

    Впрочем, для реакционного поведения веществ с карбонильными группами решающей является, по-видимому, не столько уже имеющаяся поляризация, сколько возможная поляризация в переходном состоянии (поляризуемость). В отличие от двойных связей С=С в случае связи С=0 направление поляризации заранее предопределено различным сродством к электронам атомов, участвующих в двойной связи. Поэтому атомы или группы атомов с неподеленными электронными парами, в том числе и анионы, всегда будут присоединяться к положительному углероду (нуклеофильные реагенты), а протоны или соответствующие катионы — к отрицательному кислороду связи С= О (электрофильные реагенты). Тенденция к присоединению и устойчивость образующихся веществ в значительной мере зависят от природы заместителей, а также от влияния катализаторов. [c.290]

    Окись мезитила может реагировать с фенолом и по другому направлению. В этом случае первой ступенью является присоединение нуклеофильного реагента — фенола — к электрофильному углерод- [c.73]

    Вулканизация фторкаучуков может осуществляться перекисями, диаминами и другими бифункциональными нуклеофильными реагентами. Во всех случаях атомы водорода метиленовой группы ответственны за этот процесс. При нагревании фторкаучуков с перекисями происходит радикальный отрыв атома водорода. В результате рекомбинации получающихся при этом радикалов образуются прочные углерод-углеродные связи, обеспечивающие высокую термическую и химическую стойкость вулканизатов [11]. Существенным недостатком перекисной вулканизации является ее недостаточная эффективность, в частности высокое накопление остаточной деформации сжатия. [c.504]

    В разд. 1.1 отмечалось, что замена одного атома водорода в этилене на электроноакцепторную карбонильную группу приводит к тому, что соединения такого типа могут присоединять по кратной углерод-углеродной связи нуклеофильные реагенты, причем атака этих реагентов направляется на р-углеродный атом. [c.80]

    Большинство примеров реакций присоединения нуклеофильных реагентов к кратной углерод-углеродной связи а, -непре-дельных карбонильных соединений было приведено в разд. 1.1. Здесь же осталось рассмотреть еще две реакции, в которых присоединение этих реагентов идет в по.ложение 1,4, [c.85]

    При реакциях нуклеофильного замещения в алифатическом ряду происходит взаимодействие органических соединений субстратов), у которых имеется дефицит электронной плотности на ато-.Vie углерода, связанном с электроноакцепторной группой X, с органическими или неорганическими соединениями или анионами, Y или Y (нуклеофильными реагентами), в состав которых входят один или несколько атомов с неподеленными парами электронов на внешней оболочке. [c.96]

    Можно предположить, что повышение устойчивости хлороформа и четыреххлористого уг.перода к гидролизу обусловлено влиянием +/И-эффекта хлора, возрастающего при увеличении положительного заряда на атоме углерода, а также тем, что более объемистые, чем водород, атомы галогена, не подлежащие и данный элементарный акт замещению и имеющие избыточную электронную плотность, препятствуют атаке нуклеофильного реагента  [c.118]

    Некоторые нуклеофильные реагенты являются в то же время сильными основаниями, и поэтому они в первую очередь отщепляют от нитросоединения протон. В образовавшемся анионе (15) атом азота нитрогруппы с )язан с атакуемым атомом углерода более прочной связью, чем ординарная, вследствие чего нитрогруппа в дальнейшем не может быть замещена на нуклеофильные реагенты. Например, нитроэтан не удается подвергнуть щелочному гидролизу с образован.чем этилового спирта. [c.120]


    Вследствие Наличия на атоме углерода значительного дефицита электронной плотности карбонильные соединения гораздо легче, чем спирты, реагируют с нуклеофильными реагентами, причем реакционная способность их тем выше, чем больше частичный положительный заряд на атоме углерода карбонильной группы. [c.184]

    Кинетические исследования реакции натрийацетоуксусного эфира с алкилгалогенидами в безводном этаноле, приводящей к С-алкилпроизводным ацетоуксусного эфира, показали, что она имеет второй порядок, аналогично реакциям гидролиза и алкоголиза алкилгалогенидов. На этом основании можно утверждать, что эта реакция относится к реакциям нуклеофильного замещения, протекающим по механизму N2, причем анион натрийацетоуксусного эфира, подобно ионам СМ и ЫОг , можно рассматривать как амбидентный нуклеофильный реагент, в котором местом с наибольшей нуклеофильной реакционной способностью является атом углерода метинной группы, а местом с наибольшей электронной плотностью — атом кислорода карбонильной группы. [c.244]

    Амбидентный анион натрийацетоуксусного эфира (нуклеофильный реагент) имеет два реакционных центра мягкий -- атом углерода группы СН и жесткий — атом Кислорода карбонильной группы. Его поведение как нуклеофила может изменяться в зависимости от строения субстрата (как уходящей группы, так и R), природы растворителя и природы противоиона — металла. [c.248]

    Амид калия, будучи сильным основанием, отщепляет из а-положения бензольного кольца активированный атом водорода в виде протона, а из образовавшегося аниона вытесняется ион С1 и образуется чрезвычайно активная электронейтраль-ная частица — дегидробензол (91). Не исключено, что отщепление протона и хлорид-иона происходит синхронно. Дегидробензол мгновенно присоединяет нуклеофильный реагент, причем нуклеофил с равной вероятностью может образовать ковалентную связь с любым из двух связанных тройной связью атомов углерода. Реакция завершается отщеплением карбанионом протона от аммиака и регенерацией амид-иона  [c.407]

    Большое препаративное значение имеет реакция замены ди-азогруппы на группу СЫ, позволяющая ввести в органическое соединение еще один атом углерода. В известной степени она является аналогом синтеза Кольбе, позволяющего получать нитрилы алифатических кислот из алкилгалогенидов и цианида калия. По причинам, обсужденным ранее (см. разд. 2.1), в арилгалогенидах заменить атом галогена на нуклеофильные реагенты, в том числе иа группу СН, удается только в жестких условиях, поэтому эта реакция, проводимая в сравнительно мягких условиях, находит практическое применение при синтезе нитрилов ароматических кислот. [c.459]

    Диазометан — чрезвычайно реакционноспособное вещество. Так как в нем на атоме углерода имеется избыточная электронная плотность, он может реагировать и как сильное основание, и как нуклеофильный реагент, а также быть донором карбенов. Реакции диазометана как основания. Как известно, к соединениям, обладающим наибольшими основными свойствами (т. е. способностью отщеплять от соединений атом водорода в виде протона и связывать его в недиссоциированное соединение), относятся вещества, имеющие избыточную электронную плотность на атоме углерода. В первую очередь к ним следует отнести металлорганические соединения — соединения, в которых имеется ковалентная связь углерод—металл. Так как электроотрнцательность таких металлов, как Ма и равна 0,9—1,0, то степень ионности связи С—М составляет 50%. а избыточная электронная плотность находится на атоме углерода. Соединения с основными свойствами, присоединяя за счет избыточной электронной плотности протон, образуют с ним практически недиссоциированное соединение. Наиболее сильными основными свойствами обладают такие соединения, как бутиллитий и трифенилметилнатрий несколько уступают им магнийорганические соединения. [c.465]

    При атаке атома углерода, несущего частичный положительный заряд (вследствие поляризации связи С—X), реагентом 0Н начинает намечаться образование связи НО—С с одновременным ослаблением С—Х-связи. Реакция идет через переходное состояние (реакционный комплекс), в котором три атома водорода расположены в одной плоскости, перпендикулярной линии связи НО—С—X. При дальнейшем удалении галогена от углеродного атома и перехода его в ион Х группа ОН приближается к атому углерода настолько, что образует с ним обычную ковалентную связь. Весь процесс замещения осуществляется в одну стадию. Рассмотренный механизм реакции называется бимолекулярным нуклеофильным замещением и обозначается символом 5к2 (Ингольд). Скорость этой реакции пропорциональна концентрациям галогеналкила и нуклеофильного реагента  [c.94]

    При взаимодействии с полярными реагентами л-связь карбонильной группы разрывается. В результате этого происходит присоединение атомов или групп атомов атакующего реагента. Нуклеофильное присоединение к карбонильной группе — процесс ступенчатый. Реакция начинается с медленной атаки нуклеофильным реагентом положительно заряженного углерода карбонильной группы. [c.127]

    Скорость нуклеофильного присоединения тем выще, чем больше положительный заряд на атоме углерода в карбониле. Увеличение или уменьшение этого заряда зависит от природы заместителей, связанных с углеродом карбонильной группы. Известно, что электроноакцепторные (электрофильные) заместители увеличивают этот заряд и тем самым способствуют присоединению нуклеофильных реагентов. Наоборот, электронодонорные (нуклеофильные) заместители понижают положительный заряд на углероде за счет смещения в его сторону электронной плотности, затрудняя при этом такое присоединение. Например, уксусный альдегид будет проявлять меньшую активность в реакциях нуклеофильного присоединения, чем его трихлорзамещенный аналог — хлораль  [c.127]

    Алкилсиланы, имея полярную связь 51—С, расщепляются при действии электрофильных или нуклеофильных реагентов. При этом нуклеофильный реагент атакует атом кремния, а электрофильный — атом углерода, что связано с характером поляризации связи кремнии — углерод. Типичными электрофильными реагентами в этом случае могут быть галогены и сильные кислоты, например серная кислота  [c.188]

    Например, в монозамещенных металлоорганических производных, таких, как фенилкалий (СУШ), влияние отрицательного полюса на циклический углерод должно было бы увеличивать электронную плотность кольца. Влияние должно было бы быть наиболее сильным в о-ноложении и уменьшаться для м- и и-полон ений в указанном порядке. Можно было бы ожидать, что нуклеофильный реагент должен атаковать различные положения в таком порядке п-> м->о-. Более ранние литературные данные по ориентации, наблюдаемой при введении двух атомов металла, противоречат этому. Однако в недавно опубликованной работе [66] сообщается, что при введении двух атомов металла в бензол при помощи этилкалия при 20° было получено соотношение п-/лс-замещенных, равное [c.473]

    Поэтому дефицит электронной плотности на атоме углерода карбонильной группы в данном соединении ничем не погашается, и эта группа присутствует в кетене в чистом виде . Это обусловливает исключительно высокую активность кетенов при взаимодействии с нуклеофильными реагентами, по отношению к которым кетены являются ацилируюшими агентами  [c.92]


    В приведенных примерах оба атома с неподеленными парами электронов (в примере А —атомы углерода и азота, а в примере Б — атомы азота и кислорода) в Периодической системе элементов находятся рядом, и поэтому различие их нуклеофильных свойств не так велико. Однако существуют нуклеофильные реагенты, н которых атомы с неподеленными пара.ми электронов ирннад.1ежат к (. дному и тому же периоду, и< нм холятся не м [c.102]

    Из анионов наиболее слабыми нуклеофилами являются га-логенид-ионы к тому же они способны создать наибольший дефицит электронной плотности на атакуемом атоме углерода субстрата. Поэтому реакции замещения атома галогена в гало-генпроизводных на нуклеофильные реагенты являются наиболее типичными примерами реакций нуклеофильного замещения в алифатическом ряду. [c.113]

    В том случае, когда неносредсгвенно связанный с галогеном атом углерода находится состоянии iip -гибридизации, его способность к замещению на нуклеофильные реагенты определяется его электроотрицательностьк), поляризуемостью и энергией связи С—Hal. [c.116]

    Как уже отмечалось выше, уходящие группы X по легкости замещения их на нуклеофильные реагенты можно расположить в следующий ряд Hal > ОН > NH2. Казалось бы, этот ряд можно было бы продолжить влево и дополнить группами, имеющими еще больший отрицательный индуктивный эффект, например NOj и N. В самом деле, имея на атоме, непосредственно связанном с остальной частью молекулы, шачительный положительный заряд, эти группы могли бы в еще большей степени увеличить дефицит электронной плотности на атакуемом атоме углерода и тем самым облегчить протекание реакции нуклеофильного замещения по механизму 5 2. Однако в действительности ни для нитрилов карбоновых кислот, ни для первичных и вторичных алифатических нитросоединений неизвестны случаи вытеснения анионов N или NO2, хотя вытеснение этих групп в виде анионов в условиях проведения реакций нуклеофильного замещения энергетически выгодно. [c.119]

    Как уже отмечалось, нуклеофильное за.мещение атома галогена по ме.ханизму SN2 в изоиропнлгалогеннде, в котором атакуемым атом углерода связан с двумя электронодонорными ме-тильными группами, осуществляется труднее и с меньшим выходом, чем н этил- II метилбромида.х. Уменьшение реакционной сно-собностм в этом случае приписывали уменьшению дефицита электронной плотности на атакуемом атоме углерода. Однако уменьшение реакционной сиособиости изопропилбромида по сравнению с первичными алкилгалогенидами можно отнести и за счет пространственны.х затруднений, создаваемых нуклеофильному реагенту алкильными группами, имеющими больший объем, чем атомы водорода. [c.122]

    Скорость реакции, протекающей по механизму 5м1, имеет первый порядок относительно алкилгалогенида и нулевой — относительно нуклеофильного реагента. Существование мономоле-кулЯ )ного механизма нуклеофильного замещения 5 1 подтверждают следующие экспериментальные факты независимость скорости реакции от концентрации нуклеофильного реагента сравнительно высокие значения энергии активации, наблюдающиеся обычно при гетеролитическом разрыве свя )ей рацемизация при использонании в качестве субстрата оптически активного третичного алкилгалогенида, а котором атом галогена связан с асимметрическим атомом углерода, нуклеофильное замещение галогена по механизму I и и.аеальном случае сонро- [c.127]

    Примером такой реакции, сопровождающейся перегруппировкой углеродного скелета, служит реакция гетеролиза неопентилбромида. Несмотря на то что этот бромид — первичный алкилгалогенид, он практически не способен к реакциям нуклеофильного замещения по механизму N2 из-за пространственных затруднений, создаваемых разветвленным трег-бутиль-ным радикалом при подходе нуклеофильного реагента. Сольво-лиз неопентилбромида по механизму 5ы1, т. е. в протонных растворителях, также исключается, потому что он — первичный алкилгалогенид. Однако его можно заставить реагировать по механизму N1 в присутствии водных растворов солей серебра, так как ион серебра вырывает из молекулы алкилгалогенида анион брома, образуя бромид серебра. При этом первоначально образовавшийся менее устойчивый карбокатион (23), у которого положительный заряд находится на первичном атоме углерода, перегруппировывается в более энергетически выгодный третичный карбокатион (24), который затем и реагирует по трем возможным направлениям  [c.132]

    Следует специально остановиться на реакции с ионом Р , позволяющей получать из спиртов труднодоступные алкнлфто-риды. Фторид-ион — чрезвычайно слабый нуклеофильный реагент. Поэтому в пнертных растворителях, несмотря на значительный частичный положительный заряд на а-атоме углерода в тозилате, фторид-ион не реагирует с ним ио механизму .г нуклеофил. [c.153]

    Как было показано в предыдущем разделе, замещение атома водорода в группе ОН электроноакцепторными группами РСЬ, 50зН, СНзСбН ЗОг повышает положительный заряд на а-атоме углерода и увеличивает тем самым реакционную способность спиртов по отношению к нуклеофильным реагентам. Обратное наблюдается при замещении атома водорода в группе ОН спиртов электронодонорными алкильными группами. Простые эфиры — малореакционноспособный класс органических соединений. [c.155]

    В ульдегпллх и котопах атом кислорода свя ан о- и л-связями с одним и тем же атомом углерода. Вследствие высокой иоля-ри. уемости л-свя.чь сильно смещена в направлении более электроотрицательного атома кислорода. Несмотря иа то что длины связей С—О и С —О равны соответственно 0,143 и 0,121 нм, дипольный момент (который, как известно, является произведением заряда на расстояние между разноименными зарядами) этилового спирта [>авен 1.70 Д, а у ацетальде1 нда он составляет 2,70 Д. Эти значения свидетельствуют о том, что на атоме углерода карбонильной группы имеется значительно больший дефицит электронной плотности, чем на атоме углерода, связанном с группой ОН в спиртах, и поэтому альдегиды и кетоны должны легче реагировать с нуклеофильными реагентами. Первой стадией таких реакций является присоединение нуклеофильного реагента по связи С = 0  [c.162]

    Примеров реакций нуклеофильного замещения азотсодержащих групп известно мало. Соображения, высказанные относительно причин, порождающих затруднения при замещении гидроксигруппы спиртов нуклеофильными реагентами (см. начало разд. 2.2), с еще большим основанием могут быть отнесены к нуклеофильному замещению аминогруппы, где частичный положительный заряд на атоме углерода еще меньше, чем в спиртах, а вытеснение группы ЫНг в виде аниона не удается осуществить даже самыми сильными нуклеофильными реагентами — карбанионами, которые при взаимодействии с аминами ведут себя исключительно как сильные основания (а амины — как NH-ки лoты). [c.177]

    При этом замещается нитрогруппа в положении 2. Это можно объяснить следующим образом. Нуклеофильный реагент (аммиак) атакует тот атом углерода, на котором больше дефицит электронной плотности. Нитрогруппа, связанная с атомом С-2, вследствие создаваемых метильными группами пространственных затруднений выведена из плоскости бензольного кольца, что значительно снижает мезомерное взаимодействие кратной связи нитрогрулпы с я-электронами бензольного кольца, а следовательно, уменьшает частичный по--тожительный заряд на атомах углерода, находящихся в орто- и ара-положе-ннях по отношению к ней. Разница в б+, создаваемом нитрогруппами, настолько велика, что несмотря иа экранирующее действие метильных групп атака н>члеофильного реагента направляется на атом С-2, а не С-5. [c.406]

    Реакции диазометана как нуклеофила. В качестве нуклеофильного реагента диазометан способен образовывать ковалентную связь с электронодефнцитным атомом углерода карбонильной группы. [c.467]

    Галогеноангидриды обладают высокой реакционной способностью. Атом галогена, связанный с ацильной группой, чрезвычайно подвижен и легко вступает в реакции обмена. Эго происходит при взаимодействии галогеноангидридов с соединениями, содержащими атом металла или активный (подвижный) атом водорода. Вначале нуклеофильный реагент атакует положительно заряженный атом углерода карбонильной группы, а затем подвижный атом водорода присоединяется к кислороду этой группы. Образовавшийся промежуточный продукт теряет галогеноводород с образованием конечного продукта  [c.147]


Смотреть страницы где упоминается термин углерод нуклеофильными реагентами: [c.236]    [c.47]    [c.122]    [c.55]    [c.100]    [c.103]    [c.116]    [c.118]    [c.128]    [c.151]    [c.164]    [c.168]    [c.292]   
Методы элементоорганической химии Кн 2 (1975) -- [ c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеофильный реагент

Реагенты нуклеофильные Нуклеофильные реагенты



© 2024 chem21.info Реклама на сайте