Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование углерод-кислородной связи в реакциях типа

    Превращение в более легкие продукты является, видимо, ступенчатым процессом твердые вещества- тяжелое масло— среднее масло-чэ-легкое масло- газ. Циклический характер средних масел остается, повидимому, тем же самым, независимо от степени превращения тяжелых масел в легкие продукты. Заключение о связи углерод—л глерод в угле, выведенное из природы средних масел, применимо к большей части углерода, находящегося в тяжелых маслах. Углерод в нерастворимом остатке, особенно при обработке в жестких условиях, по всей вероятности, должен находиться в соединениях другого типа, чем углерод в тяжелых маслах. Хотя общая природа углеродных и кислородных связей тяжелых масел может быть выведена из характеристики состава средних масел независимо от степени прохождения реакции, относительное распределение размеров стабильных ядер достигается только тогда, когда не происходит значительного крекинга или разрыва связей углерод—углерод, то есть при таких условиях, когда не образуется большого количества газообразных углеводородов. Это означает, что даже в случае битуминозных углей 60—70% углерода угля может быть превращено в растворимые продукты, из которых 40 или более процентов могут перегоняться без заметного образования углеводородных газов [26, 27]. [c.298]


    Никотинамидное кольцо НАД-Нг и изоаллоксазиновое кольцо ФАД расположены в параллельных плоскостях, так что атом азота никотинамида лежит против 2-го атома углерода рибофлавина. Неорганический фосфат соединен с двумя коферментами водородной связью, идущей к МНг-группе никотинамидного кольца. Атом водорода переносится от 4-го атома углерода никотинамидного кольца к атому азота ФАД, занимающему 10-е положение. Одновременный перенос электрона от атома азота никотинамида к С = 0-группе ФАД придает атому азота никотинамида положительный заряд, а С = О-группе ФАД — повышенную электронную плотность. Благодаря положительному заряду атом азота никотинамида притягивается к отрицательно заряженному кислородному атому фосфатного иона с образованием электростатической связи I. Электрон, перенесенный к С = 0-группе, стремится образовать связь 11. В результате возникновения этих двух связей образуется ФАД-Нг Ф. Фосфорилированный ФАД-На представляет собой макроэргическое соединение, которое может фосфорилировать АДФ либо непосредственно, либо в ходе последующего окисления. Согласно изложенной теории, разобщение фосфорилирования и дыхания, а также индуцирование АТФ-азы динитрофенолом обусловлены конкуренцией между ДНФ и 0 неорганического фосфата за четвертичный азот никотинамидного кольца. Эта конкуренция препятствует образованию ФАД-Нг- Ф. Теория Грабе дает удовлетворительное объяснение для структурных потребностей фосфорилирования в дыхательной цепи. Однако, взятая в совокупности со всем механизмом 2-го типа, эта теория не согласуется с данными о том, что способные к восстановлению компоненты дыхательной цепи, по-видимому, не являются промежуточными продуктами в реакциях фосфорилирования. [c.253]

    Присоединение по двойным или тройным связям является весьма распространенным типом органических реакций. Часто эти реакции представляют собой просто присоединение, однако в большинстве случаев присоединение является лишь одной из стадий, которая предшествует другим процессам или следует за ними. Кратная связь может существовать между двумя почти любыми атомами, способными к образованию такой связи. В органической химии особый интерес представляют углерод-углеродные, уг-лерод-кислородные и углерод-азотные кратные связи. В этой главе мы ограничимся рассмотрением реакций присоединения по двойным и тройным углерод-угле-родным связям. Большинство обсуждаемых реакций протекает с присоединением электрофильного реагента (реагента, обедненного электронами). [c.24]

    При перегруппировке одна кислород-углеродная связь ионизируется и электронная пара идет на образование двойной связи карбонильной группы. Одновременно группа К вместе со своей электронной парой переходит к тому углеродному атому, у которого произошел разрыв углерод-кислородной связи. Кислоты катализируют эту реакцию вследствие образования более реакционноспособного соединения типа ХЬ1Х (стр. 29). Эта перегруппировка имеет близкое отношение к пинаколиновой перегруппировке, и некоторые детали ее еще не вполне ясны. Зачастую не ясно, перегруппировывается ли сама окись или какое-либо соединение, получающееся из нее в условиях реакции. В присутствии бромистого магния окись дает магниевую соль галогенгидрина IX, которая, возможно, и перегруппировывается  [c.37]

    Во-вторых, как уже обсуждалось в гл. 5 книги 1, нуклеофильность в реакциях 5лг2 связана с поляризуемостью. Чем легче электронное"облако нуклеофила может быть деформировано при образовании свя. ч тем более сильным будет нуклеофил в реакциях 5л/2-типа. Сравнений нуклеофил ьности углеродного и кислородного атомов амбидентного иона еиолята приводит к выводу, что менее электроотрицательный атом углерода является более поляризуемым и поэтому должен быть более нуклеофильным. [c.21]


    При рассмотрении термохимических данных табл. 2 и 4 для закиси никеля можно заключить, что окисление через комплекс СОз в этом случае должно протекать труднее, чем на закиси меди или закиси кобальта. Различные пути реакции схематически показаны на рис. 4. Вследствие большей теплоты образования комплекса реакция (4) становится сильно экзотермичной, а процесс — чувствительным к отравлению. Эффект отравления был доказан экспериментально не только в наших работах, но также Рогинским и Целинской [30] и Винтером [21, 22]. Реакция СО(газ) + СОз (аде) = 2С0г (газ) НО механизму типа Ридиэла (пунктирная линия на рис. 4) может до некоторой степени объяснять катализ, и активность должна, по-видимому, повышаться при ослаблении связи СОз с поверхностью. Это весьма вероятно, если при возрастающих высоких степенях заполнения может возникать СОз. Такой вывод следует из приведенных выше данных для СоО, и Тейхнер с сотрудниками [25], которые недавно исследовали окисление при 35° над полученным ими катализатором NiO с большой поверхностью, объясняют свои результаты именно так, основываясь на представлениях о комплексе СОз. Что касается этих последних данных, то интересно отметить, что авторы обнаружили рост каталитической активности при последовательных регенерациях. Это может быть обусловлено постепенным уменьшением числа лабильных кислородных ионов решетки, что снижает степень взаимодействия с СО и благоприятствует реакции адсорбированной окиси углерода с кислородом в адсорбированном состоянии или из газовой фазы. Нам не удалось разложить изолированный комплекс СОз путем дозированного впуска СО в отсутствие реакционной смеси. Это может означать, как мы уже предположили ранее [16], что катализ, наблюдаемый в случае стехиометрической смеси, осуществляется по другому механизму, возможно, с участием только небольшого числа центров. Винтер [21, 22] исходит из такой точки зрения при объяснении своих результатов. С другой стороны, вполне возможно, что в условиях катализа степень заполнения поверхности становится достаточно высокой для осуществления разложения. [c.329]

    На эти представления можно опереться в разъяснении ускорения реакции СОг - - С 2С0 железом. В осуществлении этой реакции наибольшие затруднения встречает разрушение кетокомплексов, образующихся при активированной адсорбции СОг на поверхности кристаллов графита. Этим обусловлена малая скорость реакции СОг -Ь С 2С0 ири относительно низких температурах. При достаточно тесном контакте углеродной фазы с железной возможно ускорение газификации углерода в результате следующей цепи процессов активированная адсорбция СОг на железе — отщепление кислорода с образованием поверхностного комплекса оксидного типа— переход кислорода с железной поверхности на кислородную ( восстановление железа углеродом) — растворение кислорода в решетке графита при этом происходит подрыв межуглерод-ных связей, облегчается распад поверхностных кетокомплексов и образуются дополнительные молекулы СО из атомов С разрушающейся [c.153]


Смотреть страницы где упоминается термин Образование углерод-кислородной связи в реакциях типа: [c.358]    [c.52]    [c.119]    [c.467]    [c.332]   
Органическая химия (1964) -- [ c.259 , c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Кислородная реакция

Реакции образования связей

Углерод связи

Углерод, образование связей

Углерод-кислородная связь

типы связ



© 2025 chem21.info Реклама на сайте