Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен, полимеризация кислоты

    Катализаторы процесса. Алкилирование изобутана олефинами на отечественных установках производится в присутствии серной кислоты. Для алкилирования бутиленами применяется 96—98%-ная серная кислота, для алкилирования пропиленом необходима кислота более высокой концентрации — в среднем 98—100%. В процессе алкилирования постепенно происходит снижение концентрации серной кислоты, вызываемое взаимодействием кислоты с непредельными углеводородами и влагой. При понижении концентрации реакции алкилирования замедляются, а реакции полимеризации ускоряются. Поэтому отработанную кислоту заменяют свежей, концентрированной. [c.325]


    Во время полимеризации образовавшийся полипропилен выпадает в осадок. На больпшнстве установок концентрация пропилена в углеводороде подбирается так, чтобы прореагировавший раствор содержал около 20—30% осажденного твердого вещества. В разделительной колонне отгоняется непрореагировавший пропилен и часть растворителя. Остается суспензия полипропилена в растворителе. Растворитель после перегонки или возвращается прямо в реактор, или еще раз перегоняется перед повторным использованием. Отогнанный пропилен конденсируется, перегоняется и снова возвращается в реактор. Суспензия полипропилена пропускается через промежуточный сборник и центрифугу, где полипропилен освобождается от остаточного растворителя. Разбавитель отсасывается, тоже очищается на колонне и возвращается в реакцию. Отделенный на центрифуге сырой полипропилен суспендируется в низших спиртах (в метиловом или изопропиловом). Для разложения содержащегося еще в полипропилене катализатора к растворителю добавляется соляная кислота. Затем суспензия спирт — пропилен центрифугируется, спирт освобождается путем перегонки от остатков катализатора и разбавителей. После промывки водой, сушки, выдержки и добавки антиоксидантов полипропилен готов для дальнейшей переработки. [c.299]

    Пропилен подвергался каталитической полимеризации в присутствии разбавленной фосфорной кислоты при температуре выше 250° и давлении 150 ат или выше. Графическое изображение зависимости состава полимера от степени полимеризации сырья при температурах от 260 до 305° и давлениях от 170 до 400 ат в присутствии 10 и 30 %-пой ортофосфорной кислоты приводит к заключению, что в пределах этого режима единственной переменной величиной, которая сказывается иа составе полимеров, является степень полимеризации сырья. При постоянном составе сырья при этих условиях температура, давление и концентрация кислоты (катализатора) не оказывают влияния на состав продукта, которое мол но было бы обнаружить при помощи используемых аналитических методов. [c.195]

    Изопропиловый спирт. Одним из первых спиртов, полученных синтетически в иромышленном масштабе, является изопропиловый спирт (из пропилена). Серная кислота поглощает пропилен более активно, чем этилен, но следует принять меры по снижению выхода полимеров. Эту побочную реакцию можно замедлить поддержанием относительно низкой температуры реакционной смеси и работой с кислотой 85%-нон концентрации при давлении 21—28 атм. Практикуется также добавление к реакционной смеси нейтрального масла. Кроме того, полимеризацию можно замедлить, работая при высоком парциальном давлении пропилена, что благоприятствует образованию нейтрального эфира. [c.578]

    В условиях каталитической полимеризации наиболее легко в реакцию вступает изобутилен, затем -бутилены, пропилены и труднее всех этилен. Сырьем для промышленных установок каталитической полимеризации служат углеводородные фракции Сз и С, содержащие пропилен и бутилены. Пропан-пропиленовая и бутан-бутиленовая фракции газов термического и каталитического крекингов, коксования, пиролиза и других процессов могут подвергаться полимеризации вместе или раздельно. Катализатором обычно служит серная или фосфорная кислоты. [c.19]

    Широкое развитие промышленного процесса было связано со значительными ресурсами изобутана, получающегося на установках каталитического крекинга. В связи с передачей бутиленов на установки каталитического алкилирования для полимеризации стали использовать пропилен, менее в то время (в 60-х годах) дефицитный. В качестве катализатора используют фосфорную кислоту на кварцевом носителе. Полимеризацию проводят при 220— 230°С и 6,5—7,0 МПа, объемной скорости подачи сырья от 1,7 до 2,9 ч- . [c.79]


    Действительно, при 20 °С в присутствии 97%-ной серной кислоты и условиях, при которых бутены хорошо алкилируют изобутан, алкилирование пропиленом не идет совсем или идет с малой скоростью. Для подавления полимеризации требуется большая концентрация изобутана, чем при алкилировании бутенами. В условиях, когда концентрация изобутана достаточна для протекания алкилирования, выход высококипящих продуктов при алкилировании изобутана пропиленом значительно выше, чем при алкилировании бутенами, а скорость реакции меньше (табл. 5.2). [c.182]

    Пропилен является вторичным сырьем для производства бензина. Могут быть использованы две схемы полимеризация при использовании фосфорной кислоты в качестве катализатора (полимерный бензин) и алкилирование изобутана, что обеспечивает [c.43]

    Наиболее легко вступает в реакцию полимеризации изобутилен. Бутилен полимеризуется в присутствии фосфорной кислоты в условиях более высоких температур. Пропилен труднее полимеризуется, чем бутилен и, наконец, наиболее трудно идет процесс полимеризации этилена. [c.139]

    Способность олефинов к полимеризации следует тому же порядку, в каком они расположены по их склонности к образованию алкилсерных кислот, а именно этилен < пропилен < н-бутилены < изобутилен и другие третичные олефины. Образованию полимеров благоприятствует повышение концентрации кислоты и увеличение температуры. Для каждого отдельного олефина существуют известные пределы температуры и концентрации кислоты, которые нельзя переходить без того, чтобы не увеличилось образование полимеров, а в особо жестких условиях, чтобы не усилилась тенденция к осмолению и к выделению сернистого ангидрида. В табл. 34 указаны условия гидратации различных олефинов серной кислотой. Варьируя время реакции, можно дополнительно изменять эти условия. [c.140]

    Исследования в этой области явились закономерным развитием тех научных проблем, которые были поставлены работами А. М. Бутлерова в области полимеризации непредельных соединений. Установив полимеризующее действие хлористого цинка и серной кислоты на изобутилен и трехфтористого бора на пропилен. [c.599]

    В случае полимеризации под действием фосфорной кислоты при 330 и 50 агп этилен, пропилен и бутилены дают смеси жидких полимеров, которые образуются через алкилфосфаты, разлагающиеся в условиях реакции. Полимеризация этилена в бутилены протекает по следующей схеме  [c.624]

    Определите реакционные центры мономеров, участвующих в реакциях полимеризации и поликонденсации,- а) пропилен б)фенол н формальдегид в) гексаметилендиамин и адипиновая кислота г) капролактам. [c.269]

    Например, как термическое, так и катализируемое кислотой алкилирование алканов Сх — Сз пропиленом осуществляется чрезвычайно трудно. Гамма-излучение кобальта-60 (интенсивность 0,12. 10 рад/ч в течение 6 ч) инициирует длинную цепь реакций, ведущую к образованию сложной смеси продуктов, доказывающей, что наряду с обычным процессом алкилирования присоединением протекают также реакции крекинга и полимеризации (табл. 7). [c.132]

    Полимеризация изобутилена протекает весьма просто. При других алкенах, например пропилене или бутене-1, протекают более сложные реакции, в том числе перегруппировка, деструктивное алкилирование, расщепление (крекинг), изомеризация и т. д., которые следует детально рассмотреть/ Равным образом алкилирование изобутана бутенами с образованием алкилата также связано с многочисленными сложными реакциями, протекающие через промежуточные карбоний-ионы. По такому же механизму протекают и реакции изомеризации, например получения изобутана из м-бутана. Некоторые детали этих процессов будут рассмотрены дальше. Здесь достаточно лишь указать на убедительные доказательства ионного механизма реакций углеводородов. Обмен изотопами водорода между серной кислотой и алканами изостроения можно объяснить только, если постулировать легкое протеканий обмена между дейтерием катализатора и водородом исходного углеводорода [3, 68]. [c.170]

    Данные этой таблицы показывают, что в присутствии кремневольфрамовой кислоты на носителе реакция полимеризации пропилена протекает весьма интенсивно, хотя полнота ее зависит в большой степени от свойств применяемого носителя. Наиболее полно реакция полимеризации протекает при нанесении кремневольфрамовой кислоты на шариковый алюмосиликатный катализатор и на активированную трошковскую глину. За первые сутки работы выход полимеров составляет соответственно 65 и 62% на исходный пропилен. В случае применения в качестве [c.212]

    В присутствии кремневольфрамовой кислоты, нанесенной на шариковый алюмосиликатный катализатор, и полимеризации пропилена в течение 1000 час. выход полимеров равен 65% (на исходный пропилен). [c.220]

    Пропилен. Полимеризация пропилена (95% СзН и5. % СзНв) в присутствии твердой фосфорной кислоты как катализатора [22с] при температуре от 150 до 250° и давлении 10 ат показала, что скорость полимеризации зависит главным образом от температуры, состава катализатора и метода его приготовления. В этих опытах от 80 до 93% пропилена превращалось в смесь жидких моноолефинов, состоявших из небольшого количества гексеновой фракции, очень большой ноненовой фракции и небольшого количества более высококипящих олефинов, главным образом тетрамеров и пентамеров пропилена. При разбавлении пропилена пропа- [c.196]

    Сополимеризацию можно проводить так же, как полимеризацию пропилена (см. рис. 69). При периодическом методе реакцию проводят в автоклаве, куда при —65 °С сначала вводят жидкий пропилен, а затем подают этилен под таким давлением, чтобы газ был нужного состава. Оба компонента могут быть растворены в гептане, циклогек-саие или бензоле. Компоненты катализатора подают отдельно в виде растворов в углеводородах. Полимеризация продолжается примерно 10—40 мпн, после чего ее прекращают добавкой спирта. Для удаления соединений ванадия и алюминия реакционную смесь обрабатывают кислотами. После очистки добавляют антиоксиданты для стабилизации сополимера. [c.313]

    Пропилен — н-бутилен. Чтобы заполимеризовать 53 % олефинов из ожиженной смеси, содержащей 24% объемн. к-бутилена, 32% пропилена и 44 % к-бутана, требовались значительно более жесткие условия полимеризации [19] 260° и 40 ат и постоянная объемно-весовая часовая скорость 0,5 на твердой фосфорной кислоте. Продукт содержал 6% гексенов, 30% гептенов, 24% октенов и 17% ноненов. Ббльшая часть гсптеновой фракции гидрировалась в 3-метилгексан. [c.198]

    Как сообщают, пропилен димеризуется в 4-метил-1-пентен 1369] при комнатной температзфе при помощи 90—92% серной кислоты более сильная кислота дает более высококипящие комбинированные полимеры. При смешении с изобутиленом или с изоамиленом в присутствии серной кислоты пропилен сополи-меризуется с получением гептенов и октенов [370]. При помощи фосфорной кислоты при температурах ниже 300° С получаются правильные полимеры, а свыше этой температуры — комбинированные полимеры. С фтористым водородом при любых условиях получаются комбинированные полимеры [371]. Сложный полимер образуется также при термической полимеризации, которая имеет место при несколько более высокой температуре. Сравнение высокотемпературной термической полимеризации п 1олиыеризации, инищшрованной фосфорной кислотой, приведено в табл. И-17. Данные таблицы показывают, в каких размерах олефиновые полимеры превращаются в парафины, нафтены и ароматику. [c.110]


    Вторичные олефины требуют более крепкой кислоты пропилен реагирует с серной кислотой крепостью 60—70% при повышенных температуре и давлении. Образованию средних (нейтральных) эфиров за счет моноэфиров благоприятствует повышенная концентрация кислоты. При производстве спиртов сернокислотным методом пропилен и н-бутилены поглощают 85—90%-ной серной кислотой, а вторичные амилены — 80—85%-ной кислотой в этих условиях не происходит интенсивной полимеризации. Этилен взаимодействует с серной кислотой крепостью 94—98% по литературным данным, полимерообразоваппе при этом пе происходит. [c.225]

    Газ, выходяш ий из юкрубберов и. содержащий этилен и пропилен превращается в изопропвлкжый пирт под действием оергой кислоты крепостью в 93—100% ирй и мпературах ниже 30° С целью. набежать полимеризации  [c.371]

    Процесс полимеризации применяется в нефтеперерабатывающей промышленности в основном для переработки пропилена в поли-мербензин, представляющий смесь главным образом ди-, три- и тетрамеров пропилена с октановым числом около 80 по моторному методу. Возможны также получение ди- и тримеров бутенов и полимеризация смешанного сырья, содержащего пропилен и бутены. Додецены, получаемые в этом процессе, применяют для производства моющих средств. Катализаторы процесса приготавливают на основе фосфорной кислоты. [c.189]

    Присутствие различных катализаторов, в большинстве случаев солей металлов, благоприятствует процессу абсорбции газообразных олефинов серной кислотой. Так, соли металлов восьмой группы периодической системы элементов, например цианистый никель, увеличивают скорость реакции [58] для олефинов, содержащих более трех углеродных атомов. Указывается [59] на применение в качестве катализаторов комплексных цианидов металлов. Ряд катализаторов перечисляется при описании приготовления индивидуальных эфиров. Можно повысить эффективность процесса абсорбции газообразных олефинов, сначала сжижая олефины под давлением, а затем обрабатывая их серной кислотой [60]. Чтобы получить наиболее высокий выход кислых эфиров, необходимо использовать серную кислоту минимальной концентрации, способной обеспечить присоединение кислоты к данному олефину, так как с возрастанием концентрации кисло ты значительно усиливаются процессы полимеризации, в особенности высших олефинов. Пропилен и бутилены [61] полиме-ризуются при действии концентрированной серной кислоты. Пропилен реагирует с 90—92%-ной серной кислотой, образуя 4-ме-тилнентен-1 [62], тогда как 98%-ная кислота полимеризует его в более высококинящие продукты [63]. При избытке концентрированной кислоты изобутилен и высшие олефины превращаются в сложную смесь углеводородов, в которой преобладают парафины и циклоолефины [64]. В присутствии сернокислых солей меди и ртути даже этилен превращается 95%-ной кислотой в смесь углеводородов различных классов [65]. [c.16]

    Изрпропилсерная кислота. Изопропилсерная кислота имеет значение как промежуточный продукт при изготовлении изопропилового спирта и диизопропилового эфира из пропилена. Этот олефин реагирует с серной кислотой значительно легче, чем этилен [176, 178], и может абсорбироваться более слабой кислотой. Чтобы получить высокий выход изопропилсерной кислоты, необходимо употреблять менее концентрированную кислоту, так как при концентрированной кислоте преобладаю Г побочные реакции [233]. Абсорбция улучшается в присутствии инертного растворителя для пропилена при условии обеспечения тесного контакта раствора с кислотой [234]. Введение инертного растворителя уменьшает полимеризацию, происходящую при непосредственном растворении пропилена в серной кислоте. Наиболее удовлетворительные результаты получаются при использовании 87%-ной кислоты. Можно также избежать полимеризации, если вести абсорбцию 65—80%-ной кислотой при температуре 10—30° и давлении выше 3,5 ат [235]. В одном из патентов [236] рекомендуется проводить реакцию в жидкой фазе и при низкой температуре, поддерживая последнюю испарением части пропилена. В другом патенте [237] предлагается растворять пропилен в концентрированной серной кислоте при температуре —15°, обеспечивая соприкосновение смеси газов с кислотой в течение некоторого времени. Серная кислота, разбавленная примерно равным объемом ледяной уксусной кислоты, растворяет пропи- [c.45]

    Бутилены серной кпслотой абсорбируются легче, чем пропилен и этилен, и поэтому можно приготовить смесь бутилсерных кислот [242], практически свободную от низших гомологов, применяя серную кислоту соответствующей концентрации. Изобу-тилен можно абсорбировать 65%-ной кислотой [243], а прочие бутилены—85° о-ной кислотой при 30° или с концентрацией 88% и выше прп температурах 3° и ниже [244]. Запатентована [245] абсорбция бутиленов в жидкой фазе иод давлением при температуре 30—35°. При растворении в 78°о-ной кислоте жидкий бути-лен-2 образует ничтожное количество полимеров, тогда как абсорбция более концентрированной кислотой соировождается значительной полимеризацией [233]. Бутилсерная кислота, полученная из бутилена-1 пли бутилена-2, в результате омыления дает вторичный бутиловый спирт [246]. [c.46]

    Известная аналогия между действием алюмосиликатов и хлористого алюминия открывает широкие возможности для различных предположений. Дегидратация этилового спирта иад окисью алюминия при 450° дает в основном этилен, но одновременно образуется небольшое количество гомологов полиметиленовых углеводородов. Пропилен при нагревании до 330—375° под давлением образовал жидкие продукты, все фракции которого, кроме низших, содержали полиметиленовые углеводороды. Подобные же наблюдения известны для изобутилена (450°, давление 47 атм, продолжительность реакции от 0,5 до 4 часов). Из продуктов полимеризации выделен 1,1,3-триметилциклопентан. В этом случае полиметилен образовался не из димера изобутилена, и авторы предположили, что снерва образуется своеобразный циклический димер 1,1,3,3-тет-раметилциклобутан, который распадается на бивалентный радикал, изомеризующийся в другой, способный циклизоваться в поли-метилет[. А. И. Богомолов получил полиметиленовые углеводороды термокатализом жирных кислот при 250° над алюмосиликатами. [c.99]

    Олефины в присутствии серной кислоты могут либо гидратироваться в соответствующие спирты, либо полимеризоваться, что зависит от их молекулярного веса, строения, концентрации серной кислоты и температуры опыта. Этилен при температуре до 100 под действием 99—100% Н2504, особенно в присутствии активаторов (солей серебра), гидратируется. Повышение давления, нагревание выше 100° и добавление к серной кислоте солей меди пли ртути способствуют полимеризации этилена в масла. Аналогично ведут себя пропилен, н-бутилены, н-амилены и н-гексилены. Так, пентен-1 и пентен-2 70—75% НаЗО лишь гидратируются, но не полимеризуются, н-гептилен также превращается лишь вгептанол. но высшие олефины нормального строения уже не гидратируются, а превращаются в димеры. [c.594]

    В 30-х годах процесс селективной каталитической полимеризации бутиленов широко использовали с целью последующего гидрирования димера (изочС8Н1б) и получения таким образом технического изооктана — компонента авиационного бензина. Процесс этот впоследствии потерял свое значение, так как был вытеснен каталитическим алкилированием бутиленами изобутана, содержащегося в больших количествах в газах каталитического крекинга. Позднее был внедрен процесс получения полимер-бензина на основе пропилена, который был менее дефицитен. В качестве катализатора используют фосфорную кислоту, нанесенную на кварц. Полимеризацию проводят при 220—230 °С, 6,5—7,0 МПа и объемной скорости подачи сырья от 1,7 до 2, 9 ч . Применяется и совместная полимеризация пропиленов и бутиленов или бутиленов и амиленов. [c.285]

    Прямое алкилирование тиофена легко осуществляется взаимодействием некоторых алкенов разветвленного строения с тиофеном в присутствии минеральных кислот. При алкилировании изобутиленом в качестве продуктов реакции получают 2- и З-тпрет-бутилтиофены и смесь но крайней мере двух ди-трет-бутилтиофенов. Пропилен медленно взаимодействует с тиофеном, но реакцию тиофена с этиленом до сего времени провести не удалось. Это, возможно, объясняется тем, что кислоты, сила которых достаточна для алкилирования этиленом, вызывают быструю полимеризацию последнего. В присутствии активированных глин, разбавленной серной кислоты и фосфорной кислоты тиофен полимеризуется до тримера и пентамера. [c.285]


Смотреть страницы где упоминается термин Пропилен, полимеризация кислоты: [c.77]    [c.190]    [c.311]    [c.354]    [c.22]    [c.136]    [c.284]    [c.237]    [c.360]   
Методы элементоорганической химии Цинк Кадмий (1964) -- [ c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Кремневольфрамовая кислота как катализатор полимеризации пропилена

Полимеризация кислот

Полимеризация пропилена в присутствии фосфорной кислоты

Пропилен полимеризация

Пропилен, полимеризация дихлорангидридами кислот

Пропилен, полимеризация одноосновных кислот

Пропилен, полимеризация эфиров двухосновных кислот

Фосфорная кислота как катализатор полимеризации пропилена



© 2025 chem21.info Реклама на сайте