Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонилы металлов кобальта

    Для металлизации в газовой фазе чаще всего используют реакции термического разложения. Наиболее подходяш,ими соединениями для этой цели являются карбонилы металлов. В ходе реакции при определенных условиях они разлагаются, оставляя на покрываемой поверхности металл и высвобождая окись углерода, которую опять можно использовать для получения карбонила металла. То есть СО играет роль реагента—переносчика металла. Это не только удобно в производственном отношении, но и сводит к минимуму непроизводительные затраты вспомогательных реактивов, исключает загрязнение окружаю-ш ей среды. В настояш ее время с помош ью карбонильной металлургии производят как металлические покрытия, так и порошки металлов — железа, никеля, кобальта, вольфрама, хрома. [c.18]


    А —Н Активность карбонила металла по отношению к активности карбонила кобальта в данной реакции  [c.29]

    Карбонил металла Карбонил железа Карбонил никеля Карбонил кобальта 89 [c.85]

    И спиртов из олефинов, окиси углерода и водорода в присутствии кобальтовых катализаторов. Это открытие не только привело к созданию во многих странах промышленных установок оксо-синтеза, но и дало удивительную реакцию, которая может быть осуществлена в автоклаве под высоким давлением или просто в пробирке путем смешивания стехиометрических количеств карбонил-гидрида кобальта и олефина. Впоследствии было установлено, что карбонил кобальта — катализатор более чем 50 типов реакций. Другим источником получения новых металлоорганических комплексов, новых органических соединений и новых методов синтеза были работы Реппе, посвященные изучению реакций ненасыщенных углеводородов (главным образом ацетилена) и кислородсодержащих органических соединений с окисью углерода в присутствии карбонилов никеля и железа. Оказалось, что карбонил никеля имеет наибольшую ценность при синтезе акрилатов из ацетиленовых углеводородов и окиси углерода. Публикуется постоянно возрастающее количество сообщений о новых интереснейших синтезах органических соединений через карбонилы металлов и их производные или же через соли переходных металлов. Фактически эта область открыта совсем недавно, и можно ожидать, что она по пучит огромное развитие в ближайшем будущем. [c.8]

    Никель в нулевой степени окисления образует тетракарбонил N (00)4. В обычных условиях — это бесцветная жидкость (т. пл. — 19,3°С, т. кип. 43°С). Его получают действием СО на порошок никеля при 60—80°С. При 180°С карбонил никеля разлагается, что используется для получения чистого никеля и его покрытий на металлах. N (00)4 применяется также в органическом синтезе в качестве катализатора. Легкость образования N (00)4 используется для разделения никеля и кобальта, так как для получения карбонила кобальта требуются более высокие температура и давление. Так как к тому же летучесть Со2(СО)8 меньше, чем N ( 0)4, разгонкой их смесей удается достичь высокой степени разделения N и Со. [c.609]

    Реппе впервые было показано, что образование кислот из олефинов, СО и HjO может успешно катализироваться карбонилами металлов. Наиболее активным катализатором реакции гидрокарбоксилирования оказался карбонил кобальта. В некоторых случаях карбонилы никеля более селективны. Эффективным катализатором реакции гидрокарбоксилирования являются также каталитические системы, содержащие палладий, фосфорную или серную кислоту. В качестве промоторов реакции широко используют пиридин или иод. [c.266]

    КАРБОНИЛЫ МЕТАЛЛОВ — химические соединения оксида углерода СО с металлами, например, карбонил никеля N1 (С0)4, открытый первым в 1890 г. В настоящее время получены карбонилы многих металлов и некоторых неметаллов. К- м. бывают одноядерными и многоядерными, в зависимости от количества атомов металла в молекуле, а также смешанные, например [Ре (СО)4) Hg. Большинство К. м. при обычных условиях кристаллические, кроме N1 (С0)4, Ре (СО) Ни (СО),, 05 (С0)5. к. м. хорошо растворяются в органических растворителях, летучи, сильно ядовиты. Наибольшее значение в технике имеют К- м.— никеля, кобальта, железа. К. м. применяют для получения чистых металлов, для покрытия поверхности металлами, как ката- [c.120]

    Характерными комплексными соединениями железа, кобальта и никеля являются карбонилы, которые отвечают нулевой степени окисления металлов. Подобные соединения рассмотрены ранее для элементов подгрупп хрома и марганца. Однако наиболее типичными среди карбонилов являются Ре(СО)й, Со2(СО)в и Ы1(С0)4. Карбонилы железа и никеля получают в виде жидкостей при обычном давлении и температурах 20—60 °С при пропускании потока СО над порошками металлов. Карбонил кобальта получают при температуре 150—200 "С и давлении 2-10 —310 Па. Это оранжевые кристаллы. Помимо Ре(С0)5, существуют и карбонилы более сложного состава Ре2(СО)э и трехъядерные карбонилы Реа(С0)12, представляющие собой соединения кластерного типа, как и Сог(СО)8 (со связью Ме—Ме). [c.411]


    Рабочее давление процесса зависит от применяемой температуры. Оно должно быть достаточно высоким для сохранения кобальта в активной карбонильной форме при рабочей температуре [29, 46]. Поэтому при сравнительно высоких температурах, необходимых для гидрокарбонилирования олефинов сложного строения, или при применении кобальта в виде металла или солей, необходимы также сравнительно высокие давления процесса. Отсюда следует, что если применять предварительно приготовленный карбонил кобальта в ка- [c.271]

    Вторая группа методов основывается па восстановлении карбонила водородом [11, 29, 36] с образованием твердого металлического кобальта. Металл обычно осаждается на твердой насадке, например пемзе [29]. Его можно регенерировать растворением в азотной кислоте с последующим переводом в маслорастворимую соль [29] или непосредственным превращением в карбонил кобальта реакцией с окисью углерода или синтез-газом [29, 32]. Образующийся [c.273]

    Превращение карбонила кобальта в металлически кобальт люжет осуществляться также простым термическим разложением [13, 56]. В атом случае металл осаждают на насадке или на поверхностях нагрева возможно также -удалять его в виде взвеси в продукте реакции или водном слое. Твердый кобальт можно регенерировать, удалять фильтрацией, отстаиванием [57] или при помощи магнитного сепаратора [35]. Предложен остроумный способ [25], основанный на осаждении кобальта на углеродистой насадке, которую затем сжигают для регенерации металлического кобальта. Для декобальтизации или выделения кобальта из водных растворов предложено [19] использовать ионообменные смолы. [c.274]

    Гидрирование альдегидов можно проводить обычными способами в присутствии многочисленных доступных катализаторов. Как указывалось выше, его можно также проводить, используя тот же катализатор на носителе или взвесь катализатора, которые применяются при собственно гидрокарбонилировании. Применяемые для этой цели катализаторы включают никель [2], кобальт [17, 29 ] и хромит меди [29 ]. При всех вариантах процесса (кроме варианта со взвесью катализатора) перед гидрированием необходимо предварительно удалить карбонил кобальта из сырого альдегидного продукта. При применении никеля или других отравляемых окисью углерода катализаторов это имеет особенно важное значение, так как разложение карбонила ведет к выделению свободной окиси углерода. На одной из установок сырой альдегидный продукт и водород, применяемый для гидрирования, подвергают весьма тщательной очистке для удаления серы, окиси углерода и следов металлов [2]. [c.274]

    Никель обычно извлекают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руд выделяют медный и никелевый концентраты. Никелевый концентрат вместе с флюсами плавят в электрических или отражательных печах с целью выжигания серы в виде бОз, удаления железа в виде силиката в шлам и концентрирования никеля в металлизированный штейн, содержащий до 10— 15% никеля и 15-25% серы. Наряду с никелем в штейн переходит часть железа, кобальт, медь, благородные металлы. Затем штейн окисляют в конверторах с помощью вдуваемого воздуха и в присутствии флюса. Более реакционноспособное железо практически полностью переходит в шлак, а получающийся файнштейн — сплав Си с N1 — после охлаждения разделяют на Си и N1 с помощью флотационного или карбонильного процессов. Никелевый концентрат после флотации обжигают в кипящем слое до N10 и восстанавливают коксом в электродуговых печах до чернового металла. Черновой металл рафинируют электролизом до содержания никеля 99,99%. При разделении карбонильным методом файнштейн обрабатывают СО при 100—200 атм и 200-250 °С, а полученный карбонил N1 (С0)4 разлагают при атмосферном давлении и температуре около 200 "С. При этом получают никелевый порошок или никелевую дробь диаметром до 10 мм. [c.186]

    По структуре координационные соединения могут быть в виде одноядерных комплексов и многоядерные, например мостиковые комплексы, образованные молекулами или ионами, способными связываться с двумя или более атомами (ионами) металлов. Комплексы с мостиковыми лигандами довольно распространены, например карбонил кобальта Со2(СО)д  [c.509]

    Катализаторы скелетной изомеризации моноолефинов значительно менее разнообразны и многочисленны, чем катализаторы скелетной изомеризации парафинов (табл. 8). В их число входят окислы и соли тех же элементов, которые образуют соединения, активные в изомеризации алканов. Несмотря на то, что образование ионов карбония из олефинов легко реализуется путем простого кислотно-основного взаимодействия субстрата с бренстедовским кислотным центром, не требуя содействия окислительных центров, среди веществ, активных в скелетных перегруппировках олефинов, так же как в изомеризации парафинов, встречаются окислительно-восстановительные катализаторы металлы платиновой группы, кобальт, никель, а также окислы металлов подгруппы хрома. [c.42]

    Существенно, что нейтральные атомы хрома, железа и никеля — все имеют четное число электронов и им недостает до конфигурации ближайшего инертного газа соответственно двенадцати, десяти и восьми электронов. Если окись углерода соединяется с металлом за счет дативной ковалентной связи, то во всех случаях добавляется как раз столько электронов, сколько необходимо для достижения числа электронов у инертного газа. Молекулы можно рассматривать как комплексы нейтральных атомов, которые не вносят электронов для связей и поэтому находятся в окислительном состоянии О (см. стр. 190). Так, например, никель имеет десять внешних электронов, которые как раз заполняют пять Зй-орбит. При этом орбиты 4з и 4р могут комбинироваться в тетраэдрические гибридные орбиты для образования связей с молекулами окиси углерода. Хотя кобальт не образует одноядерного карбонила, существует соединение Со(СО)дЫО, так же как Ре(СО)2(КО)2. В этих молекулах вокруг центрального атома имеется такое же количество электронов, как у инертного газа, если ввести вполне разумное допущение [c.173]

    При синтезе на кобальтовом катализаторе принимается, что первично образующиеся а-олефины могут гидрироваться в парафины, изомеризоваться в олефины со средним положением двойной связи, сочетаться в большие молекулы или расщепляться иа меньшие. Такой механизм был предложен в начале 70-х годов, однако, как показали более поздние исследования (Ха-нус и др.), эта точка зрения имеет ряд существенных недостатков. Во-первых, предусмотренный этим механизмом комплекс (А) представляет собой как бы особую форму гидрида карбонила металла, образование которой характерно для железа [РеН2(СО)4] и кобальта [СоН(СО)4]. Эти соединения чрезвычайно нестабильны и разлагаются при температурах ниже 0°С. Кроме того, образование карбонилов металлов при аналогичных карбонильных структурах со многими молекулами СО на поверхностных атомах металла-катализатора мало вероятно из-за их нестабильности в условиях ФТ-синтеза. Во-вторых, метильная группа, связанная в реакционном комплексе(III) с поверхностным атомом металла, при ослаблении этой связи, видимо, будет реагировать с активным водородом, образуя метан, причем в результате должно было бы регенерироваться исходное соединение (А). Адсорбция метильной группы идет путем, ведущим к образованию метана, в то время как по конденсаци-онно-полимеризационному механизму образование метана является побочной реакцией. [c.279]


    Окись углерода, присутствующая в газовой фазе, должна превращаться в жидкофазный карбонил металла. Это, вероятно, происходит в результате превращения трикарбонила кобальта в тетракарбонил или в гидрокарбопил кобальта  [c.121]

    Наличие отрицательного заряда на карбониле металла приводит к смещению частот поглощения линейных карбонильных групп в сторону меньших частот. Так, Ре(СО) поглощает в области 1786—1780 см" (Эджелл и др., 1960 Фишер, 1960), в то время как Ре(СО)д поглощает при 2028 и 1994 см (Шеляйн, Питцер, 1950), как и ожидается для концевых карбонильных групп. Частоты карбонила аниона кобальта Со(СО) также смещены в низкочастотную область (1883 см в растворе пиридина Фридель и др., 1955). [c.70]

    Устойчивость в ряду однотипных соединений ЬпМК, как правило, возрастает при увеличении атомного номера металла и при повышении электроотрнцательности алкильного или арильного заместителя Н. Стабилизирующее действие некоторых лигандов объясняется тем, что при введении их в молекуле металлорганического соединения возникают стерические препятствия для атаки реагентов по связи М—р. Особой устойчивостью, не только термической, но и к реакциям расщепления по связи. металл — углерод, отличаются фторалкильные производные переходных металлов. Так, алкилкар-бонилы железа и кобальта неустойчивы при комнатной температуре, тогда как перфторалкильные производные типа (СО)зСо(Ср2)гСо(СО)з или соединение 28.XXX, образующиеся при взаимодействии карбонила металла с С2р4, совершенно стабильны. [c.191]

    В настоящее время все исследователи, работающие в области каталитического синтеза с окисью углерода, считают наиболее вероятной схему механизма реакции карбонилирования, предложенную Хеком и Бреслоу для гидроформилирования олефинов в присутствии карбонилов кобальта и никеля [2, 4—6]. По этой схеме сначала из карбонила металла образуется гидрокарбонил, который далее выполняет функцию основного катализатора гидроформилирования. При взаимодействии гидрокарбонила и олефина возникает алкилметаллкарбонил, который затем изомеризуется в ацильное производное. Последнее соединение реагирует с водородом, давая продукт реакции — альдегид и регенерируя гидрокарбонил  [c.131]

    Были получены некоторые интересные результаты [56] по обмену СО с Соз(СО)дСХ (где X = И, Г, С1, Вг), который имеет структуру [34, 85], аналогичную структуре X. Существенным отличием является то, что группа Со(СО)з в структуре X замещена на СХ [XI). Уг.иерод находится в одном из углов тетраэдра и соединяется 0-связью с каждым из трех атомов кобальта. Обмен СО с этими соединениями несколько более медленный, чем у соединения X, но скорость обмена соответствует закону скорости реакции первого порядка для карбонила металла и нулевого порядка для СО. [c.478]

    Карбонилы металлов имеют любопытную и драматическую историю. В 1890 г. Монд открыл первое соединение этого типа — карбонил никеля. Это открытие почти сразу же нашло применение в промышленности, что дало толчок развитию поисков карбонилов других металлов. В течение последуюш их двадцати лет были синтезированы карбонил , железа, кобальта и молибдена, а также изучены свойства этих необычнгях соединений переходных металлов. [c.7]

    Обработка гидразина окисью углерода при повышенных температурах под давлением дает различные продукты реакции, характер которых зависит от того, применялся карбонил металла или нет [91, 92]. В присутствии каталитических количеств карбонила железа, кобальта или никеля при температурах 20—100° и под давлением окиси углерода образуются семикарбазид и амид гидразиндикарбоновой кислоты. В отсутствие металлов, образующих карбонилы, получаются другие продукты. [c.345]

    При образовании стабильных карбонилов металлов они приобретают электронную оболочку благородного газа, для чего требуется 12 электронов для металлов VI группы, 11 для металлов VII группы и 10 для металлов VIII группы. Поэтому карбонилы Ш и Мо взаимодействуют с 12 я-электронами шести групп СО и образуют октаэдрические молекулы [46]. Карбонил Ке присоединяет 5 групп СО (10 электронов) и образует двуядерный карбонил за счет связи Не—Ке. Молекулу этого карбонила можно построить из двух октаэдров, в каждом из которых в центральном положении находится один атом металла, пять вершин заняты группами СО, а шестая — вторым атомом металла. Молекула карбонила железа с пятью группами СО имеет строение тетрагональной пирамиды. Но известно, что пять эквивалентных гибриди-зованных связей не образуется, юэтому одна из связей Ре—С ослаблена, что подтверждается измерениями дипольного момента. В карбониле кобальта также одна из связей (Со—Со) отлична от других (Со—С). [c.110]

    На конечном этапе получения кобальта и никеля оксиды (смесь Со.О и СогО, в производстве Со и N10 в производстве N1) восстанавливают з глеродом в электропечах. Выпла.рленные кобальт и никель очищают электролизом (электролиты — водные растворы Со504 или N 504 с добавками). Мировое производство кобальта составляют в год несколько десятков тысяч тонн, никеля — сотни тысяч тонн. Никель отделяют часто от других металлов в виде карбонила N (00)4. Сопутствующая никелю медь карбонила не образует, а карбонилы Со2(СО)з и Ре(СО)б сильно отличаются по давлению пара от N (00)4. Полученный восстановлением оксидов высокодисперсный продукт, содержащий N1, Со, Ре, Си и различные примеси обрабатывают СО при давлении 7—20 МПа и температуре 200°С. Образовавшийся карбонил никеля очищают рек-Таблица 3.11. Некоторые свойства железа, кобальта, никеля [c.556]

    При рассмотрепии кобальта с порядковым числом 27 становится очевидным, что образование, подобное строению благородного газа, в этом случае маловероятно, так как трудно предположить, чтобы этот металл при соединении только лишь с окисыо углерода был насыщенным в своей внешней оболочке. Оп обязательно будет иметь слишком мало пли слишком много электронов. Поэтому молекула карбонила кобальта содержит не один атом металла, а представляет дикобальтоктокарбопил — С02 (СО)в, состоящий [c.700]

    Гидроформилирование [435] олефинов проводят действием моноксида углерода и водорода в присутствии катализатора, обычно карбонила кобальта, но это может быть и родиевый комплекс 436], например гидридокарбонилтрнс (трифенилфосфин) родий, или другое соединение переходного металла.В промышленности эта реакция называется оксо-синтезом, но ее можно провести и в лабораторных условиях в обычном аппарате для гидрирования. Субстраты по реакционной способности можно расположить в следующем порядке терминальные олефины с нормальной цепью>внутренние олефины с нормальной цепью> олефины с разветвленной цепью. Из сопряженных диенов получаются диальдегиды при катализе соединениями родия [437], но в присутствии карбонила кобальта образуются насыщенные моноальдегиды (вторая двойная связь восстанавливается). В молекуле субстрата могут присутствовать различные функциональные группы, например ОН, СНО, OOR, N, однако галогены, как правило, мешают реакции. Гидроформилирование тройных связей происходит очень медленно, и известно лишь небольшое число примеров таких реакций [438]. Побочно протекают альдольная конденсация (реакция 16-40), образование ацеталя, реакция Тищенко (т. 4, реакция 19-71) и полимеризация. Сообщалось о стереоселектпвном син-присоединении (см., например, [439]). С помощью хиральных катализаторов проведено асимметрическое гидроформилирование [440]. [c.211]

    Стремление к образованию 18-электронной оболочки объясняет многие необычные структурные характеристики координационных соединений карбонилов металлов, соединений ценового, аре-нового и смешанного типов. Так, необычная структура карбонила кобальта Сог(СО)8 (VП) объясняется тем, что в ней достигается 18-электронная конфигурация валентной оболочки. Мостиковые карбонильные группы образуют многоцентровые связи, при формальном рассмотрении они отдают по одному электрону на оболочку каждого атома кобальта. Диамагнетизм Со2(СО)8 свидетельствует о спаривании эл,ектронов кобальта и образовании связи Со—Со. Действительно, расстояние Со—Со составляет по данным рентгеноструктурных исследований всего 2,5 А. Интересно отметить, что в растворе структура УП находится в равновесии с изомерной ей структурой XX, также согласующейся с правилом 18 электронов  [c.192]

    Эту схему можно расширить и включить в нее гидриды и галогениды карбонилов, если учесть, что каждый атом водорода и галогена отдает электронной системе металла лишь один электрон. Таким образом, число электронов железа и кобальта в Н2ре(СО)4 и НСо(СО)4 составляет 36, что соответствует криптону. Для Ке в Ке(СО) 5Х это число равно 86 (75+ 10+ 1), что соответствует радону. Так как для приобретения устойчивой конфигурации кобальту требуется нечетное число электронов, образование гидрида монометаллического карбонила оказывается возможным даже в том случае, когда существование самого монометаллического карбонила невозможно. Формулы многих карбонилов аммиакатов указывают на то, что пары электронов из атома азота, ЫКз, могут быть сдвинуты к атому [c.225]

    Эти и другие преимущества карбонил-процесса обусловили за последние десятилетия дбвольно широкое его развитие применительно к производству некоторых- металлов в металлургической и химической промышленности большинства технически развитых стран. Поскольку выбор металлов для осуществления данного процесса пока ограничивается летучестью их карбонилов, в настоящее время этот метод применяют в промышленном масштабе для производства металлургического никеля, специальных модификаций железа и отчасти кобальта, металлов шестой группы (хрома, молибдена, вольфрама) и некоторых металлов платиновой группы. Кроме того, во многих странах публикуется большое количество научно-исследовательских работ по дальнейшему использованию карбонил-процесса для получения ряда ценных металлов (в частности, тугоплавких) на основе как чисто карбонильных, так и смешанных карбонил-циклопента-диенильных соединений. [c.12]

    Известны комплексы, содержащие СО и о-фенантролин, отличающиеся от уже упомянутых тем, что в них входит не ион, а нейтральный атом металла. Так, например, Хибер и Мюльбауэр [105] показали, что при легком нагревании пентакарбонила железа Fe( O)s и о-фенантролина в ацетоне при температуре 60° появляется синее окрашивание при 65—70° выделяется СО, окраска переходит в красную и выпадает осадок желтовато-коричневого соединения состава Ре(СО)з(фен). Подобным образом карбонил никеля Ni( 0)4 и о-фенантролин в пиридине, ацетоне или безводном спирте дают относительно устойчивый комплекс Н1(С0)з(фен) в виде рубиново-красных игл, а карбонил кобальта Со(СО)4 и о-фенантролин в разбавленном метаноле дают темно-коричневый комплекс Со(СО)з(фен) [106]. [c.293]

    Гидрид карбонила кобальта - белое кристаллическое вещество, которое плавится при температуре 26 °С. Выще этой температуры он довольно быстро разлагается и чрезвычайно токсичен. Следовательно, основной недостаток гидридов карбонильных комплексов переходных металлов (в том числе кобальта) — их низкая стабильность. Гидрид карбонила кобальта в растворе сохраняется при температуре 200 °С (режим гидроформилирования) лищь при давлении 10 МПа. При более низком парциальном давлении СО он разлагается. [c.376]

    Карбонил кобальта Соа(СО)в образуется из металла и окиси углерода при температуре 150—220° С и давлении до 250 бар. Он образуется также в присутствии меди (или другого металла, способного присоединять серу или галоген) при действии СО на СоЗ или СоНа1а (лучше СоЬ). Со2(СО)з растворим в бензоле и других органических растворителях. [c.725]


Смотреть страницы где упоминается термин Карбонилы металлов кобальта: [c.79]    [c.355]    [c.167]    [c.84]    [c.84]    [c.76]    [c.233]    [c.223]    [c.531]    [c.664]    [c.353]    [c.281]    [c.313]    [c.71]   
Начала органической химии Кн 2 Издание 2 (1974) -- [ c.425 , c.426 , c.428 ]

Начала органической химии Книга 2 (1970) -- [ c.466 , c.470 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонилы металлов

Карбонилы металлов подгруппы кобальта

Кобальт карбонил



© 2024 chem21.info Реклама на сайте