Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен Этим алкилирование

    Синтезы. 1. Некоторые алкильные гомологи бензола образуются при полимеризации алкилированных ацетиленов, причем обычно эта конденсация протекает даже легче, чем конденсация самого ацетилена  [c.484]

    При получении олефинов пиролизом углеводородов наряду с этиленом и пропиленом образуются в сравнительно небольших количествах (менее 2%) и высоконенасыщенные соединения, в основном ацетилен и его гомологи [4П. Наличие этих соеди-нений в пирогазе и в получаемых впоследствии его фракциях отрицательно сказывается на показателях процессов переработки олефинов снижается выход продуктов (процесс полимеризации), отравляются катализаторы (карбонилирование, гидратация и алкилирование), ухудшаются условия и безопасность эксплуатации установок из-за образования купренов. Исходя из этого, в настоящее время к чистоте олефинов предъявляются повышенные требования. [c.43]


    Наряду с основной реакцией алкилирования ацетиленидов натрия в условиях этой реакции возможны различные побочные процессы, например образование дизамещенных алкинов (в случае самого ацетилена). При использовании разветвленных галоидных алкилов, как уже упоминалось, может иметь место отщепление галоидоводорода под действием амида натрия с образованием олефина. Проведение реакции алкилирования тяжелыми галоидными алкилами требует повышенной температуры, что иногда приводит к изомеризации образующегося ал-кина-1. Возможны также частичное восстановление (особенно замещенных ацетиленов) и частичный гидролиз ацетиленидов при наличии следов влаги в исходных реагентах  [c.73]

    В результате сополимеризации этилена и пропилена с ацетиленом и фенилацетиленом в присутствии комплексных металлоорганических катализаторов образуются окрашенные блоксополимеры [131—133]. Предполагается, что возможность образования блоксополимеров при сополимеризации олефинов с ацетиленами определяется преимуш,ественной адсорбцией последних на активных центрах. Для этого алкилированные соединения переходных металлов в активных центрах должны обладать координационной ненасыщенностью. [c.20]

    Поскольку ацетилены с концевой тройной связью —слабые-кислоты, анионы их солей обладают основными признаками и прО являют типичные нуклеофильные свойства. Синтезы ацетиленов, основанные на нуклеофильном характере этих анионов, —это в основном реакции алкилирования и присоединения к карбонильной-группе. [c.187]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]

    С ацетиленом, разложение и полимеризация ацетилена протекают настолько" быстро, что алкилирование алкана алкином не наблюдается. Однако при наличии ядерного излучения реакцию конденсации удается инициировать при весьма мягких условиях. Эта новая реакция очень удобна для изучения, поскольку отсутствует фон , обусловленный одновременным протеканием аналогичной термической реакции. Поэтому степень превращения, инициируемого только радиацией, и скорость инициирования в данном случае удается измерить непосредственно. И в этом случае можно непосредственно обнаружить цепной характер реакции и влияние экспериментальных условий для систем, изучение которых обычными методами невозможно. [c.137]

    При температуре опытов 200—400° С и общем давлении 10—13 ат скорость термического алкилирования пропана ацетиленом исчезающе мала. В случае инициируемой облучением реакции при температурах до 320° С с пропаном взаимодействует 20—30% ацетилена, образуя продукт присоединения. При температуре выше 320° С термическая реакция протекает настолько быстро, что маскируется влияние облучения (рис. 10). В этих условиях реакция прямого алкилирования протекает крайне незначительно. Кан видно из рис. 10, скорость инициируемого облучением низкотемпературного алкилирования увеличивается с повышением температуры. Кроме того, как будет подробно рассмотрено дальше, радиационный выход или длина реакционной цепи возрастают с уменьшением интенсивности облучения. [c.137]


    Весьма существенным моментом является чрезвычайно высокая избирательность образования 3-метил-1-бутена при алкилировании. В продуктах низкотемпературного алкилирования углеводороды выше Сб обнаружены не были. Кроме нен-тена, в продукте присутствовали только метан, этан, этилен и пропилен. Эти последние соединения типичны для нецепного радиолиза пропана. Следовательно, при низких температурах ацетилен практически полностью взаимодействует с пропаном только по реакции алкилирования. Этот вывод подтверждается и материальным балансом реакции. Значения С для реакций превращения ацетилена составляли 50 при 20. 10 рад/ч и 20 при 70 10 рад/ч. Такие значения радиационного выхода указывают на то, что реакция алкилирования пропана ацетиленом представляет собой процесс с короткой цепью, длина которой при применявшихся интенсивностях облучения лежала в пределах 5—10. В пределах экспериментальных погреш-лостей длина цепи изменялась обратно пропорционально корню квадратному из интенсивности. [c.138]

    Этот тип взаимодействия для твердых тел до сих пор практически не рассматривался между тем, судя по закономерностям подбора и по сходству некоторых гетерогенных каталитических реакций с гомогенными, можно думать, что промежуточные образования такого типа играют заметную роль и в катализе. Интересно рассмотреть с этой точки зрения некоторые каталитические реакции конденсации предельных и, в особенности, непредельных (олефины и ацетилен) и ароматических углеводородов, а также реакции алкилирования и т. д. [c.20]

    Наиболее характерным для катализаторов на основе бора и алюминия является их способность ускорять всевозможные реакции присоединения и замещения. Действие соединений бора и алюминия в этих реакциях весьма сходно. На этих катализаторах идет алкилирование парафинов, ароматических, гетероциклических и других соединений. Алкилирующими агентами при этом служат моно- и диолефины и их производные, циклены, ацетилен. [c.118]

    Недавно сообщалось о гомолитическом алкилировании амидов, что может оказаться удобным методом синтеза простых алкилами-дов. В больщинстве таких реакций происходит присоединение формамида к олефинам, ацетиленам или аренам реакции индуцируются фотолизом [107], при облучении электронами [,102] или грег-бутилпероксидом [102]. Более подробно механизмы этих реакций обсуждаются ниже в разд. 9.9.3.3, но их можно проиллюстрировать на примере взаимодействия формамида с терминальным олефином схема (62) . В случае N-алкилзамещенных амидов могут возникать альтернативные радикалы, и поэтому при реакции с олефинами образуется два продукта. Так, при взаимодействии N-метилацетамида с терминальным олефином получено два продукта, как показано на схеме (63). Аналогично пирролидон-2 алкилируется как в 3, так и в 5 положении [108]. [c.413]

    Ацетилен бцл впервые получен в 1837 г. Дэви [1] обработкой алетиленида натрия водой пропин, первый из гомологов ацетилена, бы г получен в 1861 г. двумя методами действием этил ага натрия на бромпропен [2] и (почти одновременно) действием раствора едкого натра в этиловом спирте на 1,2-дибром-пропан [3]. В настоящее время ацетиленовые углеводороды получают обычно алкилированием натриевых производных ацетилена или его гомологов, проводя реакцию чаще всего в жидком аммиаке, Алкины-1 получают также с хорошими выходами отщеплением элементов галоидоводорода от соответствующего галоидопроизводного действием амида натрия в некоторых случаях для этих целей можно употреблять и спиртовую щелочь. [c.7]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    Затем в реакционную смесь вводят первичный галогеналкил. Первичные галогеналкилы с разветвлением у второго углеродного атома цепи (КаСН—СНаХ) дают лишь следы монозамеш,енных ацетиленов вторичные и третичные галогенопроизводные в реакцию алкилирования не вступают, так как в этих условиях они, отщепляя галогеноводород, превращаются в этиленовые углеводороды. Наиболее часто применяются бромистые алкилы. Хлористые алкилы реагируют с меньшей скоростью. Выход уменьшается с увеличением. длины алкильного радикала. Иодиды реагируют хорошо, но образуют большее количество аминов, чем бромиды и хлориды. Ароматические галогенопроизводные в реакцию не вступают. Галогеналлилы образуют смесь соединений, содержащих 8 и 11 углеродных атомов строение этих соединений не установлено. [c.188]

    В этой связи мы сочли необходимым сделать термодинамически расчет равновесий реакций алкилирования бензола и толуола ацетиленом и метилацетилеиом  [c.291]

    При изучении реакции алкилирования ацетиленом и его гомологами ароматических соединений, в частности фенолов , синтезированные дифенолы анализировали с помощью хроматографии в тонком слое окиси алюминия. Матовую стеклянную пластинку покрывали товарной хроматографической окисью алюминия в сухом виде (слой толщиной 0,5 мм, без применения фиксирующих средств). Дифенолы лучше всего разделялись элюэнтом, представляющим собой раствор этанола в бензоле в отношении 1 15. Хроматогргмму проявляли, используя пары иода. Для количественного определения компонентов был опробован метод измерения и сравнения площадей их пятен. Оказалось, что при хорошем разделении компонентов и при резких границах пятен этот метод расчета дает достаточно точные данные. Ошибка определения менее 6%. Этим методом были разделены дифенолы и их орто-пара-замещенные изомеры. Необходимо отметить, что в этой работе количество определяемого компонента было 10% и выше, поэтому о возможности применения метода для анализа микроколичеств судить трудно. [c.188]

    Во избежание медленного катализа твердым хлористым алю-миние этот активный каталитический ком1Плеке целесообразно готовить предварительно и потом подавать на реакцию. Кроме НС1 его образованию способствуют иебольшне добавки воды или соответствующего хлорироизводного, роль которых состоит в генерации НС1. Более приемлемо использовать НС1 или R 1, так как вода дезактивирует часть катализатора, разлагая его. По этой же причине необходимо хорошо осушать реагенты и следить, чтобы в реакционную смесь пе попадала вода, способная вызвать бурное разложение комплекса. Другими катализаторными ядами являются многие сернистые соединения и аммиак, в меньшей степени — диены и ацетилен. Следовательно, жидкая реакционная масса при алкилировании с хлористым алюминием состоит из двух фаз каталитического комплекса и углеводородного слоя. [c.243]


    Для химической переработки выделенных из газа углеводородов используются, практически, все основные реакции органического и нефтехимического синтеза пиролиз, конверсия, окисление, гидрирование и дегидрирование, гидратация, алкилирование, реакции введения функциональных групп — сульфирование, нитрование, хлорирование, карбонилирование и др. Наряду с процессами разделения они позволяют получать на основе газообразного топлива водород, оксид углерода (II), синтез-газ, азотоводородную смесь, ацетилен, алкадиены, цианистый водород, разнообразные кислородсодержащие соединения, хлор, нитропроизводные и многое другое. В свою очередь эти полупрЬдукты являются сырьем в производстве многочисленных целевых продуктов для различных отраслей народного хозяйства высококачественного топлива, пластических масс, эластомеров, химических волокон, растворителей, фармацевтических препаратов, стройматериалов и др., как это показано ниже. [c.198]

    S ранних работах [2, 3] алкилирование ацетилидов щелочных -металлов проводилось в жидком аммиаке при действии органических галогенидов или сульфатов в качестве алкилирующих агентов. Среди галогенидов бромиды дают наилучшие результаты, однако эта реакция имеет ограничения ввести можно только первичные алкильные группы, не имеющие разветвления у второго атома углерода. Кроме того, при применении алкилгалогенидов этот метод не дает удовлетворительных результатов при синтезе метил- или этил-ацетиленов, а в случае высших алкилгалогенидов необходимо работать под давлением. Если исходить из бромидов от w-пропил-до н-гексилбромида, то выходы колеблются от 40 до 80%. При использовании диметил- или диэтилсульфата в качестве алкилн-рующего агента происходит замещение лишь одной алкильной группы и конверсия достигает от 50 до 100%. Другие сложные эфиры, такие, как метан- и я-толуолсульфонаты, а также, ацетилиды лития и калия тоже использовались, но в ограниченной степени. [c.188]

    Затем в реакционную смесь вводят первичный галогеналкил. Первичные галогеналкилы с разветвлением у второго углеродного атома цепи (НаСИ — СНгХ) дают лишь следы монозамещенных ацетиленов вторичные итретичныегалогенопроизводныевреакцию алкилирования не вступают, так как в этих условиях они, отщепляя галогеноводород превращаются в этиленовые углеводороды. Наиболее часто применяются бромистые алкилы. Хлористые алкилы реагируют с меньшей ско- [c.174]

    Введение ацетиленовой функции в молекулу чаще всего осуществляют реакцией алкилирования ацетиленид-иона. Последний может быть получен из реактива Иоцича (магнийбромацетиленид), при действии оснований на сам ацетилен условиях реакции Фаворского (порошковатый едкий кали в сухом эфире) или при растворении ацетилена и металлического иатрия, лития или калия в жидком аммиаке. Взаимодействие этого аниона с обычными алкили-руюшими агентами (алкилгалогениды с галогеном при первичном углеродном атоме во избежание реакции отщепления галогеноводорода) приводит к гомологам ацетилена. Пример использования этой реакции в синтезе можно позаимствовать из охемы синтеза Г-го-мозстрона  [c.159]

    Одновременно работы Ола показали, что в присутствии сильных электрофильных реагентов насыщенные углеводороды играют роль оснований, причем донорами электронов служат простые ст-связи С—Н и С—С, которые в сверхкислых средах способны легко вступать в реакции электрофильного замещения (нитрования нитро-ний-ионом, алкилирования, изотопного обмена водорода связей С—Н). Автор предлагает называть основания этого типа а-донорами, чтобы подчеркнуть их отличие от олефинов, ацетиленов и ароматических систем — л-доноров электронов, и молекул, содержащих гетероатомы со свободными парами электронов,— п-доноров. [c.9]

    Свободнорадикальное алкилирование амидов наблюдается редко. Прямое замещение по атому О или N неизвестно, однако алкилирование по атому С может быть осуществлено путем.гемолитического присоедипения амида к олефину. Реакции фотоприсоединения формамида к олефинам, ацетиленам и ароматическим системам были также детально изучены [107]. Эти реакции которые обычно инициируются такими кетонами, как ацетофенон, состоят в присоединении радикала формамида к ненасыщенной связи с образованием замещенного амида. В случае терминальных олефинов получены высокие выходы амидов схема (62) в случае терминальных ацетиленов главными продуктами являются 2 2 аддукты (105а). При реакции с нетерминальными олефинами R H— H H= HR R H— HR [c.466]

    Хлор может также замещаться углеродом. Сульфонилхлорнды в присутствии катализаторов реакции Фриделя — Крафтса могут сульфировать ароматические соединения [2, 50] (уравнение 44) [51], но если в этой реакции при отщеплении диоксида серы из сульфонилгалогенида может образоваться стабильный карбокатион, то вместо сульфирования происходит алкилирование (уравнение 45) [52]. Описано катализируемое солями меди присоединение аренсульфонилгалогенидов к некоторым ацетиленам при этом образуются стереоизомерные р-хлорвинилсульфоны (уравнение 46) [53]. Можно было ожидать, что при обработке сульфонилхлоридов реактивами Гриньяра и другими металлорга- [c.521]

    Методы прямого алкилирования толуола позволяют получать лишь полупродукты для производства винилтолуола - этилтолуол или дитолил этан. Однако теоретически возможно получение винилтолуола в одну стадию непосредственным взаимодействием толуола и ацетилена [21], Многочисленные попытки ряда ксследователей осуществить одностадийный синтез винилтолуола к положительным результатам не привели. Неудачу этих исследований объясняют тем, что в присутствии сильнокислых катализаторов алкилирования толуола ацетиленом образующийся вначале винилтолуол благодаря своей высокой реакционной способности взаимодействует с толуолом, образуя дитолилэтан. [c.6]

    IV-7. Процесс алкилирования толуола (расход 185 кмолъ ч) ацетиленом (расход 6,5 кмолъ ч в каждую ступень) в присутствии серной кислоты (расход 20,5 кмолъ ч) проводится в четырехступенчатом реакторе (рис. IV-13) при энергичном перемешивании. Время-пребывания смеси в каждой ступени 10 мин. Температура 9 °С, избыточное давление 34,3 10 н/м (3,5 ат). Предполагается, что если жидкая фаза всегда насыщена ацетиленом, то реакция протекает по уравнению первого порядка (по отношению к толуолу). При этих условиях достигается степень превращения 95%. Определить константу скорости реакции. [c.133]

    Интересный радиационный процесс, который, возможно, имеет цепную природу, представляет собой алкилирование ацетилена пропаном, в результате которого образуется З-метилбуген-1 [36 Эта реакция без воздействия излучений. не наблюдалась. На цепной характер реакции указывает величина выхода превращения ацетилена, которая равна 59 молекулам на 100 эв при интенсивности излучения 17 10 рад/ч и 36 молекулам при интенсивности 48-10 рад1ч. (Применялось смешанное излучение ядерного реактора.) Реакция имеет первый порядок ло ацетилену. Поскольку образуется метилбутен, процесс должен включать также стадии изомеризации. [c.290]

    Как показал Л. С. Дедусенко при реакции с высшими диалкилсульфатами удается получить лишь незначительный выход (10—14%) алкилированных ацетиленов. Другой недостаток этого метода заключается в том, что высшие диалкилсульфаты сравнительно трудно доступны. При реакции магнийпроизводных ацетиленовых углеводородов с метиленсульфатом могут быть [c.22]


Смотреть страницы где упоминается термин Ацетилен Этим алкилирование: [c.41]    [c.43]    [c.125]    [c.126]    [c.380]    [c.14]    [c.354]    [c.189]    [c.125]    [c.408]    [c.125]    [c.436]    [c.535]    [c.30]    [c.38]    [c.57]    [c.68]    [c.101]   
Начала органической химии Кн 1 Издание 2 (1975) -- [ c.261 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен Этим

Ацетилен алкилирование

Этил для алкилирования

Этил-ацетилен



© 2025 chem21.info Реклама на сайте