Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Секулярное уравнение для спинового гамильтониана

    В принципе возможны три различные ситуации. Неспаренные электроны могут находиться на столь большом расстоянии друг от друга, что между ними отсутствует взаимодействие они могут быть сгруппированы в кластеры, внутри которых имеется взаимодействие, но его нет между кластерами наконец, электроны могут находиться столь близко друг от друга, что существует значительное взаимодействие во всем объеме вещества. В первой и второй ситуациях нетрудно построить детерминант для секулярного уравнения, найти энергетические уровни и затем прямо решить уравнение (17.62). В третьем случае сумма, входящая в гамильтониан, должна включать авогадрово число членов то же самое относится и к произведениям спиновых функций. Получающиеся уравнения не поддаются решению методами, которые изложены здесь. Они требуют применения методов зонной теории твердого тела. Результаты зонной теории позволяют описывать такие свойства, как ферромагнетизм и антиферромагнетизм, наряду с обычными диамагнетизмом и парамагнетизмом. Экспериментально ферромагнетизм проявляется в способности вещества сохранять объемную намагниченность. Теоретически он получается, когда состояние с максимальным значением полного углового момента, для совокупности спинов в макроскопическом объеме вещества, оказывается основным состоянием. Антиферромагнетизм возникает, когда состояние с минимальным значением полного углового момента оказывается основным состоянием и представляет собой частный случай диамагнитного состояния. [c.378]



Смотреть главы в:

Квантовая химия -> Секулярное уравнение для спинового гамильтониана




ПОИСК





Смотрите так же термины и статьи:

Спиновый гамильтониан



© 2025 chem21.info Реклама на сайте