Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Живучесть сложных систем

    Для количественных оценок безопасности и живучести сложных технических систем типа ХП и МТ важное значение, как отмечалось выще, имеют вероятностные методы расчета конструкций. Разработаны и широко применяются на практике различные модели и методы оценки работоспособности элементов конструкций в условиях реализации случайных нагрузок, заданного статистического закона распределения свойств материала и т.д. В основу построения таких моделей обычно закладывают эмпирические знания о характере возможных воздействий, особенностях распределения свойств материала и геометрии элементов. Эти модели и соответствующие расчетные методы позволяют перейти к определению, нормированию и обоснованию допустимых параметров риска, уровней нагруженности и дефектности элементов технической системы. Необходимо отметить, что ценность результатов, полученных на основе вероятностных оценок работоспособности элементов конструкций при сложных статических и динамических спектрах нагружения, снижается по мере снижения статистической обусловленности эмпирических допущений, лежащих в основе расчетных методик. Поэтому при оценке маловероятных событий возникают объективные сложности, связанные с достоверностью и обоснованием результатов вероятностного анализа. [c.124]


    Вторым фактором рисков является то, что сложные технические системы, обладающие высокой потенциальной опасностью для людей и окружающей среды, в большинстве случаев создавались и создаются с использованием традиционных правил проектирования и простейших инженерных методов расчетов и испытаний. До настоящего времени пока не удалось сформировать фундаментальные научные основы обеспечения безопасности сложных технических систем по критериям безопасности, риска, живучести и надежности в сильно поврежденных состояниях. Пока не приняты национальные и международные нормативные и руководяш е документы по классификации аварийных ситуаций (проектные, запроектные, гипотетические) и их последствий (объектовые, локальные, местные, региональные, национальные, глобальные и планетарные) не предложена общая номенклатура опасных рабочих процессов, технологий, материалов и технических объектов не согласованы унифицированные положения по системам жесткой, функциональной и комбинированной защиты, оперативной диагностики и мониторинга аварийных ситуаций с применением мобильных наземных, воздушных и космических систем не созданы национальные и международные технические комплексы ликвидации последствий аварий и катастроф, в первую очередь с тяжелыми людскими, экономическими и экологическими последствиями. Финансовая поддержка обеспечения безопасности в природно-техногенной сфере и эффективность государственных программ и мероприятий пока недостаточны. [c.45]

    По мере создания все более сложных и ответственных систем, к числу которых в частности, относятся и современные системы связи, транспорта и энергетики, все острее встает вопрос обеспечения их живучести. Интуитивно ясно, что, например, в электроэнергетике концентрация мощности электрических станций, создание энергокомплексов, с одной стороны, приводит к более эффективному использованию капиталовложений и снижению эксплуатационных расходов, но, с другой стороны, существенно снижает живучесть системы. [c.128]


Смотреть страницы где упоминается термин Живучесть сложных систем: [c.112]    [c.23]    [c.100]    [c.195]    [c.251]   
Смотреть главы в:

Надёжность технических систем Справочник -> Живучесть сложных систем




ПОИСК







© 2025 chem21.info Реклама на сайте