Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лагранжа логические

    Параметрические методы доопределения системы моментных уравнений, несмотря на их очевидность и логическую простоту получения решения, базируются на очень сильном исходном предположении о виде искомого распределения, которое обычно выбирают волевым методом. Этот недостаток в выборе доопределяющих уравнений можно устранить, если воспользоваться непараметрическими методами интерполяции для определения связей между целыми и дробными моментами на интервале времени и, Переходя к безразмерным переменным при помощи нормирования всех моментов на их значения в начале интервала, запишем интерполяционный полином Лагранжа [120] для оценки дробного момента в виде [c.103]


    Для решения экстремальных задач с такими ограничениями в классическом анализе разработан и используется метод неопределенных множителей Лагранжа [1], сводящий задачу с ограничениями к обычной экстремальной задаче без ограничений, что позволяет применить для ее решения приемы, рассмотренные в главе III. В этом смысле настоящая глава является логическим продолжением предыдущей. Метод же множителей Лагранжа дает возможность иногда использовать более эффективные приемы, ведущие к решению исходной оптимальной задачи. [c.148]


Химические приложения топологии и теории графов (1987) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Лагранжа



© 2024 chem21.info Реклама на сайте