Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классический анализ

    Аналогичное препятствие на пути применения классических методов поиска экстремума отмечалось также и при отыскании экстремума функции х (/) методами классического анализа (см. главу И1). [c.242]

    МЕТОДЫ ИССЛЕДОВАНИЯ ФУНКЦИЙ КЛАССИЧЕСКОГО АНАЛИЗА [c.87]

    Остается заметить, что методы исследования функций классического анализа являются той базой, на которой основано использование и более тонких и общих методов решения задач оптимизации, поэтому указанные методы не теряют своего значения в теории оптимальных процессов по мере дальнейшего ее развития. [c.138]


    В книге в доступной форме изложены основы методов оптимизации химических производств (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное, нелинейное и геометрическое программирование). Сформулированы общие положения, касающиеся выбора критериев оптимальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи оптимизации конкретных процессов. Второе издание (первое издание выпущено в 1969 г.) дополнено изложением основ геометрического программирования, а также примерами, иллюстрирующими практическую реализацию методов нелинейного программирования. [c.4]

    В главе И отмечалось, что решение задач высокой размерности методами классического анализа сопряжено с определенными трудностями, вызванными необходимостью решения систем обычно нелинейных уравнений высокого порядка. Вместе с тем, существуют процессы высокой размерности, свойства которых позволяют так построить алгоритм оптимизации, что размерность процесса уже не служит камнем преткновения при его оптимизации. [c.244]

    Аналитическое определение оптимума Классический анализ поиска безусловного экстремума [c.53]

    Этот подход к описанию двухмерного потока идентичен концепции, которая развивается в методах классического анализа, известных как метод сеток , или метод дискретных элементов . Физически МКЭ отличается от метода сеток только тем, что в нем элементы представляют собой двух- или трехмерные фигуры [30]. Метод сеток является простейшим методом, который был модифицирован для описания течения неньютоновских жидкостей заменой постоянной ньютоновской вязкости на эквивалентную ньютоновскую вязкость [31 ], однозначно связанную с локальным значением напряжений сдвига на стенке, в свою очередь зависящим от локальной величины градиента давлений. И то, и другое можно определить повторным решением системы алгебраических уравнений относительно Pi j, причем при каждой итерации пересчитываются значения вязкостей. Этот метод применялся для описания двухмерного течения при заполнении литьевых форм и в экструзионных головках. [c.601]

    Если в начале столетия считалось достаточным определение десятых долей процента веществ и нормальным проведение анализа в течение ряда дней, то в настоящее время необходимо определять тысячные доли процента в течение нескольких минут. Методы классического анализа даже при самом тщательном совершенствовании техники работы не отвечают таким требованиям. Границы применимости этих методов определяются точностью аналитических весов в гравиметрии, интервалом перехода окраски индикаторов в объемном анализе и, прежде всего, необходимостью длительных, приводящих к ошибкам определения методов разделения. [c.255]


    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование 7) нелинейное программирование. В последнее время разработан и успешно применяется для решения определенного класса задач метод геометрического программирования (см. главу X). [c.29]

    Методы исследования функций классического анализа (см. главу III) представляют собой наиболее известные методы решения несложных оптимальных задач, с которыми инженер знакомится при изучении курса математического анализа. Обычной областью использования данных методов являются задачи с известным аналитическим выражением критерия оптимальности, что позволяет найти не очень сложное, также аналитическое выражение для производных. Полученные приравниванием нулю производных уравнения, определяющие экстремальные решения оптимальной задачи, крайне редко удается решить аналитическим путем, поэтому, как правило, применяют вычислительные машины. При этом надо решить систему конечных уравнений, чаще всего нелинейных, для чего приходится использовать численные методы, аналогичные методам нелинейного программирования (см. главу IX), [c.30]

    Дополнительные трудности при решений оптимальной задачи методами исследования функций классического анализа возникают вследствие того, что система уравнений, получаемая в результате их применения, обеспечивает лишь необходимые условия оптимальности. Поэтому все решения данной системы (а их может быть и несколько) должны быть проверены на достаточность. В результате такой проверки сначала отбрасывают решения, которые не определяют экстремальные значения критерия оптимальности, а затем среди остающихся экстремальных решений выбирают решение, удовлетворяющее условиям оптимальной задачи, т. е. наибольшему или наименьшему значению критерия оптимальности в зависимости от постановки задачи. [c.31]

    По существу метод динамического программирования представляет собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса. При этом закон управления на каждой стадии находят путем решения частных задач оптимизации последовательно для всех стадий процесса с помощью методов исследования функций классического анализа или методов нелинейного программирования. Результаты решения обычно не могут быть выражены в аналитической форме, а получаются в виде таблиц. [c.32]

    Наименование метода, Методы классического анализа 1 2 4 4 4 4 3 4 4 4 4 4 [c.36]

    Выше уже неоднократно отмечалось, что математическая формулировка оптимальной задачи часто эквивалентна задаче отыскания экстремума функции одной или многих переменных. Поэтому для решения таких оптимальных задач могут быть использованы различные методы исследования функций классического анализа и главным образом методы поиска экстремума. [c.92]

    Настоящая глава посвящена рассмотрению практических примеров применения методов, классического анализа для решения задач выбора аппаратурного оформления и определения оптимальных условий для некоторых химико-технологических процессов. Как правило, разбираются задачи, в которых возможно получение более или менее законченного аналитического решения, представляющего в ряде случаев самостоятельный практический интерес для инженеров-технологов. [c.92]

    Методы исследования функций классического анализа в основном применяют в тех случаях, когда известен аналитический вид зависимости оптимизируемой функции R от независимых переменных Х . Это позволяет найти также в аналитическом виде производные оптимизируемой функции, используя которые и формулируют необходимые и достаточные условия существования экстремума. [c.92]

    Решение задач, связанных с отысканием оптимальных условий проведения химических реакций, несомненно играет важнейшую роль в общей организации химического производства, так как зачастую позволяет при этом же аппаратурном оформлении и тех же затратах сырья получить большой выход полезной продукции или повысить ее качество. Кроме того, химические процессы решающим образом влияют на > экономику производства, поэтому существенное значение приобретает экономически обоснованный выбор эксплуатационных параметров химических реакторов. В данном разделе изучены оптимальные условия для ряда простейших реакций, проводимых в различных аппаратах, с учетом разных экономических оценок эффективности процессов. При этом рассмотренные ниже примеры могут явиться иллюстрацией возможностей использования методов исследований функций классического анализа для решения частных задач оптимизации химических реакторов. [c.108]

    Решение задачи оптимизации непрерывного реактора идеального вытеснения в общем случае значительно более сложно, чем оптимизация реактора идеального смешения. Это в первую очередь обусловлено тем, что реактор вытеснения представляет собой объект с распределенными параметрами и его математическое описание содержит дифференциальные уравнения, решение которых в аналитической форме может быть получено лишь в весьма ограниченном числе случаев. В связи с этим ниже рассмотрены некоторые частные задачи оптимизации реакторов идеального вытеснения, которые можно решить при использовании методов исследования функций классического анализа в аналитической форме либо в форме процедуры вычислений, приводящей к определению оптимальных условий. [c.117]


    Рассмотренными выше примерами использования методов исследования функций классического анализа, разумеется, не исчерпываются возможности их применения для решения оптимальных задач химической технологии. Число примеров легко может быть увеличено, особенно за счет тех случаев, когда нельзя получить решения в аналитической форме и необходимы численные методы. [c.146]

    Область использования методов исследования функций классического анализа относится главным образом к тем задачам, когда относительно просто можно найти аналитическое выражение для параметров, входящих в критерий оптимальности. Однако применение этих методов оказывается также полезным при предварительном анализе и более сложных задач в первоначальном, возможно относительно грубом приближении. [c.146]

    Для решения экстремальных задач с такими ограничениями в классическом анализе разработан и используется метод неопределенных множителей Лагранжа [1], сводящий задачу с ограничениями к обычной экстремальной задаче без ограничений, что позволяет применить для ее решения приемы, рассмотренные в главе III. В этом смысле настоящая глава является логическим продолжением предыдущей. Метод же множителей Лагранжа дает возможность иногда использовать более эффективные приемы, ведущие к решению исходной оптимальной задачи. [c.148]

    Методы исследования функций классического анализа, рассмотренные в предыдущих главах, за исключением лишь некоторых случаев, наиболее эффективно применяются для оптимизации процессов с сосредоточенными параметрами. Лишь в ряде случаев, используя особенности математического описания конкретных процессов, указанными методами удается решить некоторые задачи оптимизации процессов с распределенными параметрами. Для этих процессов решение характеризуется не совокупностью значений конечного числа независимых переменных, а соответствующей функцией независимой переменной (как, например, при решении задачи выбора оптимального температурного профиля в реакторе вытеснения). [c.202]

    Множители Лагранжа в динамическом программировании. Неопределенные множители Лагранжа используются в классическом анализе и в вариационном исчислении при решении задач, на переменные которых наложены ограничения типа равенств. С неменьшим успехом эти множители можно применять и в динамическом программировании, где при их помощи удается снизить размерность оптимальной задачи. [c.280]

    В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]

    В настоян ее время для решения оптимальных задач применяют в основном следую1цие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) лгшеГнше программирование 7) нелинейное программирование. [c.29]

    Как правило, нельзя рекомендовать какой-либо один метод, который можно использовать для решения всех без исключения задач, возникающих на практике. Одни методы в этом отношении являются более общими, другие — менее общими. Наконец, целую группу методов (методы исследования функций классического анализа, метод множителей Лагранжа, нелинейное программирование) иа определенных этапах реикния оптимальной задачи можно применять в сочетании с другими методами, например динамическим программированием и принципом максимума. [c.29]

    Методы исследования функций классического анализа при наличии ограниченной области изменения независимых переменных можно использовать только для отыскания экстремальных значении внутри указанной области. В особенности это относится к задачам с большим числом независимых переменных (црактически больше двух), в которых анализ значений критерия оптимальности на границе допустимой области изменения переменных станоппт, я весьма слом ным. [c.30]

    Классический анализ химических процессов в пористом эерне. основан на учете равенства скоростей транспорта (диффузии) и реакции. [c.23]

    Используя коэффициенты подобия [68], полученные из данных по кризису в круглой трубе для воды и хладона-12, авторы [69] сумели связать непосредственно результаты по критическим тепловым потокам для двух жидкостей при других более сложных геометриях, включая стержневую сборку. Один из более успешных подходов к проблеме подобия описап в [70]. На основе классического анализа размернзотей здесь получено, что критический тепловой поток (выраженный через д тАк ) зависит от 12 безразмерных групп, шесть из которых исключены логическими доводами. Три безразмерные группы выражены в масштабах критического теплового потока /Ак ,-, [c.398]


Смотреть страницы где упоминается термин Классический анализ: [c.32]    [c.35]    [c.110]    [c.30]   
Методы оптимизации в химической технологии издание 2 (1975) -- [ c.29 , c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Классические



© 2025 chem21.info Реклама на сайте