Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ родословных, и пренатальная диагностика

    Несмотря на то что число идентифицированных локусов быстро увеличивалось, генетическая карта человека до самого последнего времени почти сплошь состояла из белых пятен. Рассмотрим такой пример. 1000 генов, каждый из которых имеет в среднем размер 10 т.п.н. (экзоны плюс интроны), составляют лишь 10 т.п.н. из 3-10 т.п.н. гаплоидного генома человека. Эти гены могут быть разделены миллионами пар оснований, что затрудняет применение метода прогулки по хромосоме или рекомбинационного анализа, поскольку число родословных, позволяющих проводить такой анализ, мало. Что же касается диагностики, то использование этих методов ограничивается отсутствием информации о мутантных генах и дефектных генных продуктах, ответственных за многие генетические заболевания. К счастью, теперь ситуация здесь в корне изменилась благодаря появлению нового подхода, на котором мы остановимся ниже. Этот подход позволяет проследить за судьбой генов в нескольких поколениях он пригоден для целей пренатальной диагностики, анализа распределения гена в популяции, анализа сцепления и картирования. Его можно использовать и для других организмов. Например, таким способом картируют хромосомы кукурузы, что имеет большое научное значение и может найти применение в сельском хозяйстве. [c.353]


Рис. 36.9. Анализ родословных в случае серповидпоклеточной анемии. В верхней части рисунка (А) показано начало гена 6-глобина с сайтами расщепления рестриктазой Mst II (f) у нормального (А) и серповидноклеточного (S) В-глобина. В результате расщепления ДНК здоровых индивидуумов рестриктазой Mst II образуются специфические фрагменты ДНК размером 1,15 и 0.2 т.п.н. Замена одного основания у больных серповидноклеточной анемией приводит к потере одного из трех Mst 11-сайтов в области гена и соответственно к появлению только одного специфического Mst П-фрагмента размером 1,35 т. п. н. Это различие в длине легко обнаруживается методом Саузерн-блоттинга ( ). (На данном рисунке положение фрагмента длиной 0,2 т. п. н. не указано.) Анализ родословных демонстрирует три возможных генотипа. АА-норма (О), AS-гетерозигота по гену серповидноклеточности (ЭП) и SS-гомозигота по гену серповидных эритроцитов ( ). Этот подход позволяет осуществлять пренатальную диагностику заболевания серповидноклеточной анемией и выявлять гетерозиготных носителей соответствующего гена ( 4). Рис. 36.9. <a href="/info/200477">Анализ родословных</a> в случае серповидпоклеточной анемии. В <a href="/info/1006898">верхней части</a> рисунка (А) показано <a href="/info/1413216">начало гена</a> 6-глобина с <a href="/info/1325003">сайтами расщепления</a> рестриктазой Mst II (f) у нормального (А) и серповидноклеточного (S) В-глобина. В <a href="/info/116236">результате расщепления</a> ДНК здоровых индивидуумов рестриктазой Mst II образуются специфические фрагменты ДНК размером 1,15 и 0.2 т.п.н. Замена одного основания у <a href="/info/1356354">больных серповидноклеточной анемией</a> приводит к потере одного из трех Mst 11-сайтов в <a href="/info/101813">области гена</a> и соответственно к появлению только одного специфического Mst П-<a href="/info/366275">фрагмента размером</a> 1,35 т. п. н. Это различие в длине легко обнаруживается <a href="/info/1338361">методом Саузерн</a>-блоттинга ( ). (На данном рисунке положение <a href="/info/170825">фрагмента длиной</a> 0,2 т. п. н. не указано.) <a href="/info/200477">Анализ родословных</a> демонстрирует три возможных генотипа. АА-норма (О), AS-гетерозигота по <a href="/info/1356123">гену серповидноклеточности</a> (ЭП) и SS-гомозигота по гену серповидных эритроцитов ( ). Этот подход позволяет осуществлять <a href="/info/587009">пренатальную диагностику</a> <a href="/info/1356358">заболевания серповидноклеточной</a> анемией и выявлять гетерозиготных носителей соответствующего гена ( 4).

Молекулярная биология клетки Сборник задач (1994) -- [ c.186 ]




ПОИСК







© 2025 chem21.info Реклама на сайте