Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетическая карта человека

    Некоторые особенности генетической карты человека [c.207]

    Типы генных кластеров. При поверхностном знакомстве с генетической картой человека может возникнуть впечатление, что большинство локусов распределены в значительной мере случайно. Однако имеются исключения  [c.207]

    Как упоминалось в разд. 3.4.2, реальное расстояние по карте между двумя локусами можно получить на основе оценки 0 по рис. 3.26. С увеличением плотности генетической карты человека все чаше будет устанавливаться сцепление трех и более локусов. Для оптимального картирования целого района следует объединить оценки частот рекомбинации между парами таких локусов. Правила и формулы для такого многоточечного картирования можно найти в работе [612 а]. [c.245]


    Несмотря на то что число идентифицированных локусов быстро увеличивалось, генетическая карта человека до самого последнего времени почти сплошь состояла из белых пятен. Рассмотрим такой пример. 1000 генов, каждый из которых имеет в среднем размер 10 т.п.н. (экзоны плюс интроны), составляют лишь 10 т.п.н. из 3-10 т.п.н. гаплоидного генома человека. Эти гены могут быть разделены миллионами пар оснований, что затрудняет применение метода прогулки по хромосоме или рекомбинационного анализа, поскольку число родословных, позволяющих проводить такой анализ, мало. Что же касается диагностики, то использование этих методов ограничивается отсутствием информации о мутантных генах и дефектных генных продуктах, ответственных за многие генетические заболевания. К счастью, теперь ситуация здесь в корне изменилась благодаря появлению нового подхода, на котором мы остановимся ниже. Этот подход позволяет проследить за судьбой генов в нескольких поколениях он пригоден для целей пренатальной диагностики, анализа распределения гена в популяции, анализа сцепления и картирования. Его можно использовать и для других организмов. Например, таким способом картируют хромосомы кукурузы, что имеет большое научное значение и может найти применение в сельском хозяйстве. [c.353]

    Краткий обзор генетических карт человека (аутосомные, X- и Y-хромосомные, митохондриальные). [c.100]

    Построение генетических карт хромосом человека [c.450]

    Построение генетической карты сцепления человека с помощью метода, основанного на полиморфизме длины рестрикционных фрагментов [c.458]

    Тот факт, что рестрикционные маркеры сохраняются при изменениях генома, затрагивающих фенотип, лежит в основе чрезвычайно эффективного метода идентификации генетических локусов на молекулярном уровне. Типичным примером могут служить мутации с известным фенотипическим эффектом, которые локализованы на генетической карте, хотя функция соответствующего гена или белка не известна. К этой категории относятся некоторые тяжелые заболевания человека. Это, например, кистозный фиброз, хорея Гентингтона и многие другие серьезные и даже смертельные болезни, которые наследуются по законам Менделя. Во всех этих случаях молекулярная природа мутантной функции неизвестна и, вероятно, она сможет быть выяснена только после того. [c.48]

    Как уже упоминалось в разд. 2.1.2.4, длина генетической карты генома человека составляет примерно 25,8 морганид. Если считать, что в гаплоидном геноме содержится примерно 3,5-10 нуклеотидных пар, то 1 сМ соответствует 1,356-10 нуклеотидных пар (или 1356 т.п.н.). Однако, как будет обсуждаться ниже, распределение сайтов кроссинговера в различных хромосомах не является равномерным. [c.197]


    Какими способами составляются генетические карты хромосом у человека  [c.524]

    Генетическая карта комплекса HLA человека [c.208]

Рис. III. 11 Генетическая карта 1-й хромосомы человека Рис. III. 11 <a href="/info/98321">Генетическая карта</a> 1-й хромосомы человека
Рис. 111.12. Генетическая карта Х-хромосомы человека Рис. 111.12. <a href="/info/98321">Генетическая карта</a> Х-хромосомы человека
    За четыре года, прошедших со времени выхода в свет первого издания книги Молекулярная биотехнология принципы и применение , в области биотехнологии было сделано огромное количество открытий. На рынке появилось множество новых генноинженерных продуктов (например, вакцин и лекарственных препаратов). Рутинной практикой клинических лабораторий стало использование иммунологических методов диагностики и методов, основанных на применении полимеразной цепной реакции. Открыты и охарактеризованы многие гены, ассоциированные с различными заболеваниями человека, неизмеримо возрос объем клинических испытаний в области генной терапии. Построены подробные генетические и физические карты хромосом человека впервые из дифференцированной соматической клетки клонировано жизнеспособное млекопитающее. Производство одного из трансгенных растений, сои, поставлено на коммерческую основу. [c.7]

Рис. 18.20. Генетическая карта человека. Центромера и концы каждой хромосомы отмечены горизонтальными линиями. Гены хромосомы 1 приведены в табл. 18.8. ( ourtesy of Prof. V. Рис. 18.20. Генетическая карта человека. Центромера и концы каждой хромосомы отмечены горизонтальными линиями. <a href="/info/1325169">Гены хромосомы</a> 1 приведены в табл. 18.8. ( ourtesy of Prof. V.
    Харрис и соавт. [1787] показали, что по крайней мере треть структурных генов, определяющих ферменты крови, полиморфна, т. е. и в норме далеко не все индивиды оказываются идентичными по производимым в их организмах генным продуктам межиндивидуальные различия в структуре белков и ферментов-это обычная ситуация. По оценкам у человека имеется примерно от 50000 до 100000 структурных генов. Следовательно, теоретически должны существовать тысячи полиморфных систем, хотя сейчас выявлено лишь около 150. Вот почему, если не удается нащупать какую-либо патофизиологическую связь, поиск маркеров, сцепленных с тем или иным заболеванием, будет скорее всего бесполезным. Важное направление исследований-выявление новых полиморфных систем, которые в ближайшем будущем могут оказаться полезными для поиска индивидуальных генов, вовлеченных в детерминацию заболевания. Обнаружение новых маркеров очень важно также с точки зрения полноты генетической карты человека. [c.261]

    Распространение методов картирования на очень большие, сложные геномы растений и позвоночных, включая человека, сталкивается с серьезными проблемами. Это связано с огромными размерами геномов и малочисленностью маркеров, а также трудностями экспериментальною скрещивания (у человека такие скрещивания вообще невозможны). Ранее при построении генетических карт человека ученые могли использовать только редкие данные по большим семьям, члены которых обладали специфическим мутантным фенотипом. Число идентифицированных локусов в геноме человека было очень невелико. Все это затрудняло не только фундаментальный генетический анализ, но и раннюю диагностику наследственных болезней. До недавнего времени пренатальная диагностика была возможна лишь для ограниченного числа болезней - тех, которые обусловливались значительными хромосомными перестройками (например, синдром Дауна, связанный с трисомией по хромосоме 21) или сопровождались специфическими фенотипическими проявлениями, которые легко обнаруживались при развитии плода (например, болезнь Тея-Сакса, причиной которой служит отсутствие гексозаминидазы А-гидролазы лизосом). Ситуация стала меняться с появлением [c.353]

    Бурное развитие молекулярной генетики человека, начавшееся в 1980-х гг., стало возможным благодаря новаторским идеям Д. Ботштейна, Р. Уайта, М. Скол-ника и С. Дэвиса. Они обратили внимание, что полиморфизм длины рестрикционных фрагментов (ПДРФ) человека порождает полиморфные аллели (маркерные локусы), поддающиеся картированию. Как писали авторы в своей статье, мы хотим предложить новый способ построения генетической карты сцепления человека. В его основе лежит создание при помоши технологии рекомбинантных ДНК случайных однокопийных ДНК-зондов, способных выявлять полиморфные нуклеотидные последовательности при гибридизации с индивидуальными ДНК, обработанными рестриктазой . Более того, они осознали, что, используя сцепление гена того или иного заболевания с маркерным локусом, можно определить хро- [c.458]


    Построение мультилокусной генетической карты (карты сцепления) хромосомы человека — непростая задача для ее решения используют специализированную комьютерную программу, позволяющую установить порядок расположения локусов, наилучшим образом согласующийся с данными по рекомбинациям. Проблема упорядочивания локусов усложняется по мере возрастания числа локусов, которые необходимо картировать. Для локусов сушествует М/2 возможных вариантов их расположения. Так, для 10 локусов их число равно 1 814 400. И хотя некоторые комбинации заведомо нереальны, даже если основываться на визуальной проверке данных, все же число возможных вариантов остается очень большим. Обычно сначала находят наиболее вероятное расположение нескольких сцепленных локусов, а затем комбинируют эти наилучшие варианты и строят статистически достоверную карту сцепления всех локусов. Критерием того, расположен ли один локус рядом с другим, является значение десятичного логарифма правдоподобия (лод-балла) если он равен или превышает +3,00, то ответ будет положительным. [c.459]

    Некоторые из намеченных на период 1990-1995 гг. задач той части HGP, которая выполняется в США, в 1993 г. были пересмотрены это связано с быстрым прогрессом в генетическом картировании благодаря внедрению мик-росателлитных полиморфных маркеров и построению практически полных физических карт. К 1996 г. удалось решить несколько вновь поставленных задач. Например, в 1994 г. была опубликована карта (генетического) сцепления человека, которая содержала 5826 локусов, охватывающих 4000 сМ. Хотя только для 908 локусов шансы сцепления составили больше 1000 1, ко- [c.477]

    До недавнего времени было принято считать, что геномы про- и эукариот статичны, что последовательности, образующие их, подвергаются только медленным эволюционным изменениям. Мы привыкли к мысли, что генетическая карта отражает порядок расположения известных генов подразумевается, что неидентифицированные последовательности также сохраняют постоянное место в геноме. На стабильность генетической организации указывает наличие родственных последовательностей у представителей дивергировавщих видов, например у человека и обезьяны. Различие во времени генераций про-ТГэукариот свидетельствует о том, что они эволюционируют с разной скоростью, но даже у прокариот организация генома меняется относительно медленно. Например, очень сходные генетические карты имеют разные бактериальные виды Е. соН и S. typhimurium. Эволюция генов происходит как в результате приобретения новых последовательностей, так и в результате перераспределения уже имеющихся. Новые последовательности могут быть введены с помощью векторов или появляться при мутировании существующих генов. Возникновение новых последовательностей возможно также в результате перестроек генетического материала. Такие перестройки могут изменить и функции имеющихся генов путем создания для них новых условий регуляции. [c.458]

    Под этим термином подразумевается совокупность подходов и методов, с помощью которых можно каждый ген отнести к определенной хромосоме, т.е. составить генетическую карту организма. Например, у человека благодаря применению двух основных методов—гибридизации соматических клеток и гибридизации in situ — установлена хромосомная локализация ряда генов, ответственных за некоторые заболевания. При гибридизации in situ препарат метафазных хромосом на поверхности стеклянной пластины инкубируют с радиоактивно меченным зондом. Точную область гибридизации определяют с помощью радиоавтографии (фотографическую эмульсию наносят, непосредственно на пластинку). Образование зерен над гистологически идентифицированной хромосомой позволяет сделать вывод о принадлежности данного гена к конкретной хромосоме, а часто и к определенному ее участку. Некоторые гены человека, локализованные методом гибридизации in situ, представлены в табл. 36.5. [c.46]

    В главе 3 представлена упрощенная генетическая карта МНС мышей и человека (см. рис. 3.5). Гены комплекса делятся на три класса. У мышей гены I класса контролируют гомологичные а-полипептиды, которые эволюционно произошли, очевидно, от предкового гена в результате тандемной дубликации с последующей транслокацией по длине хромосомы. В комплексе с низкомолекулярным белком Рг-микроглобулином, который контролируется геном вне МНС, образуются поверхностно экспрессируемые молекулы I класса Н-2К, Н-20, Н-2Ь (рис. 10.5). В литературе в зависимости от контекста или склонности автора используется либо буквенное обозначение фенотипипического продукта (Н-2К, Н-20, Н-2Ь), либо выражение молекулы I класса МНС . [c.275]

    Структура генома у высших организмов — в смысле функционального разнообразия генных продуктов — до сих пор остается загадкой. Несомненно, многие гены кодируют фермен ты, и одним из побочных результатов исследования природных популяций дрозофилы было нанесение на генетическую карту разных видов многих новых генов, кодирующих специфические ферменты. Но количество ДНК в сперматозоиде D. melanogaster соответствует 10 парам оснований. Если считать, что на каждый кодон приходится три пары оснований, а каждый полипептид состоит в среднем из 150 аминокислот, то этой ДНК окажется достаточно для кодирования примерно 2-10 полипептидов. У человека ДНК в 16 раз больше, и ее хватит для кодирования 3-10 полипептидов. Едва ли мы сможем поверить, что высшие организмы способны синтезировать от 250 тысяч до [c.133]

    Важнейшую роль в структурных исследованиях генома играет изучение его полиморфизма. Этот раздел молекулярной генетики является основой для понимания принципов молекулярной эволюции, механизмов возникновения патологических мутаций, для оценки факторов риска при воздействии потенциальных токсических агентов окружающей среды на человеческий организм, наконец, для понимания основ различной индивидуальной восприимчивости лекарств. Эти исследования получили новый импульс с открытием полиморфных мини- и микросателлитов, которые позволили осуществить тонкое генетическое картирование генома и в конечном счете создать интегрированные карты генома, объединяющие физические и генетические карты генома человека в единую систему. Это в свою очередь привело к развитию методов позиционного клонирования, которые позволяют быстро клонировать гены, начав с исследования их сегрегации в семьях. [c.7]

    В 1959 г. французские ученые Д. Лежен, Р.Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека. Цитогенетика стала важнейшим разделом практической медицины. В настоящее время цитогенетический метод применяется для диагностики хромосомных болезней, составления генетических карт хромосом, изучения мутационного процесса и других проблем генетики человека. [c.27]

    В последние годы созданы более со-верщенные генетические карты генома человека с использованием маркерных генов и последних достижений молекулярной генетики. [c.34]

    Для построения генетических карт у растений и животных проводят анализирующие скрещивания, в которых достаточно просто рассчитать процент особей, образовавшихся в результате кроссинговера, и построить генетическую карту по трем сцепленны.м генам. У человека анализ сцепления генов классическими методами невозможен, поскольку невоз.можны экспериментальные браки. Поэтому для изучения фупи сцепления и составления карт хромосом человека используют другие методы, в первую очередь генеалогический, основанный на анализе родословных. Рассмотрим на конкретном примере, как можно выявить группу сцепления генов и констатировать кроссинговер, анализируя родословные. [c.120]

    Генетические карты комплекса Н-2 мыши и комплекса HLA человека очень похожи и представляют собой короткие участки хромосомы (17-й у мыши и 6-й у человека) длиной 0,5—1,5 морганиды, несущие сходные наборы генетических локусов. Комплексы Н-2 и HLA подразделяются на несколько генетических областей и субобластей. [c.207]

    Составной частью сведений о геноме человека наряду с нуклеотидной последовательностью являются генетические карты хромосом, т.е. схемы, описывающие порядок расположения генов и других генетических элементов на хромосоме с указанием расстояния между ними. Генетическое расстояние измеряется по частоте рекомбинации между гомологичными хромосомами и выражается в сантиморганидах (сМ). Одна сМ соответствует частоте рекомбинации, равной 1%. Длина всего генома человека равна примерно 3000—3500 сМ, [c.27]

    В то же время успехи в расшифровке молекулярной структуры, организации и функций эукариотического генома бьши весьма скромными. Сложные генетические карты локусов, содержащих мутации, удалось составить лишь для тех немногих эукариотических организмов, с чьими генетическими системами можно было проводить манипуляции (к их числу относились некоторые виды дрожжей, Neurospora rassa, D. melanogaster). По сравнению с ними генетические карты млекопитающих, в частности мыши и человека, представлялись сплошными белыми пятнами . Егце более загадочными [c.195]

    Классическое генетическое картирование основывается на получении определенных мутаций и анализе частот рекомбинаций (см. введение к ч. I). У Drosophila генетические карты удалось расширить и уточнить путем установления корреляций между генетическими данными и хромосомными аберрациями типа делеций, инверсий и транслокаций, которые визуально проявляются как изменения в характере исчерченности политенных хромосом. Однако подобные методы непригодны для анализа хромосом большинства растений и животных. Генетический анализ немногочисленных популяций с большим периодом генерации весьма затруднителен, поскольку политенностъ встречается редко, а хромосомы довольно многочисленны, имеют небольшие размеры и с трудом поддаются вденти-фикации. Например, у млекопитающих установление корреляции между фенотипическими изменениями и делециями, транслокациями и инверсиями позволяет локализовать лишь офаниченное число генов в специфических хромосомах или отдельных их областях. С развитием методов получения клонированных сегментов ДНК были разработаны универсальные процедуры картирования, которые не зависят от фенотипического проявления мутаций. Удалось локализовать многие гены, в том числе и гены человека, в специфических областях хромосом. [c.334]


Смотреть страницы где упоминается термин Генетическая карта человека: [c.458]    [c.145]    [c.215]    [c.215]    [c.444]    [c.559]    [c.95]    [c.109]    [c.191]    [c.198]    [c.11]    [c.12]    [c.220]    [c.353]    [c.370]   
Смотреть главы в:

Современная генетика Т.2 -> Генетическая карта человека




ПОИСК





Смотрите так же термины и статьи:

Мак-Карти

карты



© 2025 chem21.info Реклама на сайте