Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микротрубочки интерфазное скопление

Рис. 13-44. На этих световых микрофотографиях культивируемых клеток сумчатого (клеток Р1К) показан ход митоза в животной клетке. Микротрубочки видны благодаря окрашиванию антителами с золотом хроматин окрашен толуидиновым синим. Г лавные события митоза на уровне световой микроскопии известны уже более 100 лет. В интерфазе центросома, содержащая пару центриолей, служит центром интерфазного скопления микротрубочек. В ранней профазе единственная центросома содержит две пары центриолей (на снимке не видны) в поздней профазе центросома делится, в результате чего образовавшиеся звезды отходят друг от друга. В прометафазе разрушается ядерная оболочка, и это позволяет микротрубочкам веретена взаимодействовать с хромосомами. В метафазе уже ясно видна двухполюсная структура веретена и все хромосомы выстраиваются в его экваториальной области. В ранней анафазе все хроматиды одновременно разделяются и под действием нитей веретена начинают двигаться к полюсам. В течение позоней анафазы полюса веретена все дальше отходят друг от друга, еще более раздвигая две группы хроматид. В телофазе формируются дочерние ядра, и в поздней телофазе почти полностью завершается цитокинез между дочерними Рис. 13-44. На этих световых микрофотографиях культивируемых клеток сумчатого (клеток Р1К) показан ход митоза в <a href="/info/104262">животной клетке</a>. Микротрубочки видны благодаря <a href="/info/1386926">окрашиванию антителами</a> с золотом хроматин окрашен <a href="/info/212934">толуидиновым синим</a>. Г <a href="/info/1408983">лавные</a> события митоза на уровне <a href="/info/510624">световой микроскопии</a> известны уже более 100 лет. В интерфазе центросома, содержащая пару центриолей, служит центром интерфазного скопления микротрубочек. В ранней профазе единственная центросома содержит две пары центриолей (на снимке не видны) в поздней профазе центросома делится, в результате чего образовавшиеся звезды <a href="/info/1680456">отходят друг</a> от друга. В прометафазе разрушается <a href="/info/106062">ядерная оболочка</a>, и это позволяет <a href="/info/510001">микротрубочкам веретена</a> взаимодействовать с хромосомами. В метафазе уже ясно видна <a href="/info/787038">двухполюсная</a> <a href="/info/1320455">структура веретена</a> и все хромосомы выстраиваются в его экваториальной области. В <a href="/info/1379127">ранней анафазе</a> все хроматиды <a href="/info/1748376">одновременно разделяются</a> и под <a href="/info/1859252">действием нитей</a> веретена начинают двигаться к полюсам. В течение <a href="/info/1853278">позоней</a> анафазы <a href="/info/1413649">полюса веретена</a> все дальше <a href="/info/1680456">отходят друг</a> от друга, еще более раздвигая две группы хроматид. В телофазе формируются <a href="/info/525503">дочерние ядра</a>, и в поздней телофазе <a href="/info/1726673">почти полностью</a> завершается цитокинез между дочерними

    Из гл. 11 мы знаем, что главным центром организации микротрубочек у большинства животных клеток служит центросома - скопление аморфного материала, окружающее пару центриолей (разд. 11.4.4). Во время иптерфазы материал центросомы инициирует рост микротрубочек, который направлен к периметру клетки, в то время как их начальные участки (минус-концы) остаются связанными с центросомой Это интерфазное скопление микротрубочек, расходящихся от центросомы, представляет собой динамичную, непрерывно меняющуюся структуру, в которой отдельные микротрубочки все время возникают и распадаются. Новые микротрубочки растут путем пристраивания молекул тубулина к плюс-концам спорадически и, по-видимому, случайно индивидуальные микротрубочки становятся нестабильными и подвергаются быст- [c.439]

    Нри этом фосфорилируются некоторые молекулы, взаимодействующие с микротрубочками, поскольку при переходе клетки в профазу время полужизни средней микротрубочки уменьшается примерно в 20 раз (от примерно 5 мин до 15 с, см рис. 13-48). Это, видимо, связано с резким повышением вероятности того, что типичная растущая микротрубочка начнет укорачиваться в результате какого-то изменения на ее плюс-конце (разд. 11.4.3, схема 11-2), а также происходящего в профазе изменения центросомы, сильно увеличивающего ее способность к образованию новых микротрубочек (это можно наблюдать in vitro). Этих двух изменений достаточно для того, чтобы объяснить, почему в начале фазы М отмечается быстрый переход от сравнительно малого числа длинных микротрубочек, отходящих от центросомы к периферии клетки (интерфазное скопление микротрубочек), к большому числу коротких микротрубочек. окружающих каждую центросому (см профазу на рис. 13-46) [c.444]


Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.439 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.439 ]




ПОИСК







© 2025 chem21.info Реклама на сайте