Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анафаза ранняя

Рис. 13-44. На этих световых микрофотографиях культивируемых клеток сумчатого (клеток Р1К) показан ход митоза в животной клетке. Микротрубочки видны благодаря окрашиванию антителами с золотом хроматин окрашен толуидиновым синим. Г лавные события митоза на уровне световой микроскопии известны уже более 100 лет. В интерфазе центросома, содержащая пару центриолей, служит центром интерфазного скопления микротрубочек. В ранней профазе единственная центросома содержит две пары центриолей (на снимке не видны) в поздней профазе центросома делится, в результате чего образовавшиеся звезды отходят друг от друга. В прометафазе разрушается ядерная оболочка, и это позволяет микротрубочкам веретена взаимодействовать с хромосомами. В метафазе уже ясно видна двухполюсная структура веретена и все хромосомы выстраиваются в его экваториальной области. В ранней анафазе все хроматиды одновременно разделяются и под действием нитей веретена начинают двигаться к полюсам. В течение позоней анафазы полюса веретена все дальше отходят друг от друга, еще более раздвигая две группы хроматид. В телофазе формируются дочерние ядра, и в поздней телофазе почти полностью завершается цитокинез между дочерними Рис. 13-44. На этих световых микрофотографиях культивируемых клеток сумчатого (клеток Р1К) показан ход митоза в <a href="/info/104262">животной клетке</a>. Микротрубочки видны благодаря <a href="/info/1386926">окрашиванию антителами</a> с золотом хроматин окрашен <a href="/info/212934">толуидиновым синим</a>. Г <a href="/info/1408983">лавные</a> события митоза на уровне <a href="/info/510624">световой микроскопии</a> известны уже более 100 лет. В интерфазе центросома, содержащая пару центриолей, служит центром <a href="/info/1339402">интерфазного скопления микротрубочек</a>. В ранней профазе единственная центросома содержит две пары центриолей (на снимке не видны) в поздней профазе центросома делится, в результате чего образовавшиеся звезды <a href="/info/1680456">отходят друг</a> от друга. В прометафазе разрушается <a href="/info/106062">ядерная оболочка</a>, и это позволяет <a href="/info/510001">микротрубочкам веретена</a> взаимодействовать с хромосомами. В метафазе уже ясно видна <a href="/info/787038">двухполюсная</a> <a href="/info/1320455">структура веретена</a> и все хромосомы выстраиваются в его экваториальной области. В ранней анафазе все хроматиды <a href="/info/1748376">одновременно разделяются</a> и под <a href="/info/1859252">действием нитей</a> веретена начинают двигаться к полюсам. В течение <a href="/info/1853278">позоней</a> анафазы <a href="/info/1413649">полюса веретена</a> все дальше <a href="/info/1680456">отходят друг</a> от друга, еще более раздвигая две группы хроматид. В телофазе формируются <a href="/info/525503">дочерние ядра</a>, и в поздней телофазе <a href="/info/1726673">почти полностью</a> завершается цитокинез между дочерними

    На ранней стадии этого прощ сса конденсации (а иногда еще во время интерфазы, или стадии покоя, или даже в предыдущем митозе) каждая хромосомная нить расщепляется в длину, и, когда хромосомы максимально укорачиваются, две половинки каждой хромосомы отделяются друг от друга (анафаза) и отодвигаются к противоположным концам клетки (телофаза). Силы, ответственные за передвижение хромосом к противоположным полюсам клетки в анафазе, еще не вскрыты, но, по-видимому, они воздействуют на определенный участок хромосомы — центромер. Если у хромосомы отсутствует центромер, что иногда случается после облучения, она из-за этого отстает в своем движении от остальных хромосом и не включается ни в одно из дочерних ядер. [c.106]

    В качестве мутагенов для индукции доминантных мутантов использовали НЭМ и ЭИ в оптимальных концентрациях, в цитологическом опыте исследование проводили с НЭМ в тех же концентрациях. Экспозиция во всех случаях составляла 20 час. В М1 учитывали всхожесть и частоту изучавшихся ранее у пшеницы типов доминантных мутантов. В цитологическом опыте подсчитывали частоту анафаз с аберрациями в первом митозе меристемы кончиков корешков. В обоих опытах для всех сортов условия проведения экспериментов были идентичными. [c.97]

    Анафаза I. Центромеры каждой пары гомологичных хромосом расходятся к полюсам веретена, увлекая за собой по паре хроматид каждой хромосомы. Соединенные ранее концы гомологичных хромосом расходятся, и хромосомы все более удаляются друг от друга. Важное отличие от митотической анафазы состоит в том, что в анафазе I мейоза центромеры не делятся. [c.30]

    В отличие от нерасхождения потеря хромосом, вызванная облучением матерей за несколько недель до или через несколько часов после зачатия,-хорошо установленный факт. Сильный эффект мощности дозы свидетельствует, что опасность сопряжена главным образом с острым облучением высокими дозами, тогда как хроническое облучение при очень низких мощностях дозы, возможно, не увеличивает частоты мутаций. Количественный эффект для человека предсказать трудно, так как большинство спонтанно возникающих зигот ХО у людей абортируется. Исследования на пациентах с кариотипом ХО ясно показывают, что большинство из них обязаны своим происхождением потере одной половой хромосомы в результате задержки анафазы или митотическому нерасхождению во время раннего деления дробления. Заманчиво предположить, что абортированные зиготы ХО являются результатом нерасхождения в мейозе, поскольку мы уверены, что нерасхождение Х-хромосом действительно происходит (об этом свидетельствует существование генотипов XXY и XXX). Неизвестно, приводит ли потеря хромосом в период после зачатия до первого деления дробления к жизнеспособным зиготам ХО у человека, однако появление зигот с таким генотипом даже в отсутствие радиации свидетельствует о повышенном общем риске потери хромосом в ходе первых делений. Вот почему необходимо считать недели, к которым приурочено оплодотворение, периодом особой чувствительности к повреждениям. В это время и в течение нескольких недель после облучения высокими дозами радиации при высоких дозовых мощностях следует избегать зачатия. [c.252]


Рис. 13-66. Опыт, демонстрирующий влияние положения веретена на плоскость деления. Если митотическое веретено механически сместить на одну сторону клетки, то борозда дробления не дойдет до противоположной стороны клетки. Последующие деления будут происходить не только по экваторам двух митотических веретен (как это происходит в норме), но и между двумя соседними звездами, не связанными митотическим веретеном. Видимо, сократимый пучок из актиновых филаментов, создающий борозду дробления, всегда образуется в участке, лежащем посередине между двумя звездами. Это означает, что звезды каким-то образом изменяют окружающую область клеточного кортекса. периода иптерфазы. Первым видимым признаком цитокинеза у животных клеток бывает образование небольшой складки плазматической мембраны, появляющейся в анафазе и называемой бороздой деления (рис. 13-65). Эта борозда всегда образуется в плоскости метафазной пластинки, под прямым углом к длинной оси митотического веретена Если в анафазе на достаточно раннем этапе веретено переместить с помощью микроманипулятора, то наметившаяся борозда исчезнет и появится новая в соответствии с новым положением веретена. Изящные опыты на яйцах морского ежа ЕсЫпагаскпгш показывают, что борозда дробления будет формироваться посередине между звездами, образовавшимися из двух центросом, даже если центросомы не связаны митотическим веретеном (рис. 13-66). Позднее, когда процесс зашел уже достаточно далеко, цитокинез будет продолжаться и в том случае, если веретено и его звезды удалить пипеткой или разрушить колхицином. Рис. 13-66. Опыт, демонстрирующий <a href="/info/1576524">влияние положения</a> веретена на плоскость деления. Если <a href="/info/97968">митотическое веретено</a> механически сместить на одну сторону клетки, то борозда дробления не дойдет до <a href="/info/1447127">противоположной стороны</a> клетки. Последующие деления будут происходить не только по экваторам <a href="/info/1696521">двух</a> митотических веретен (как это происходит в норме), но и между двумя соседними звездами, не связанными митотическим веретеном. Видимо, сократимый пучок из <a href="/info/1339102">актиновых филаментов</a>, создающий борозду дробления, всегда образуется в участке, лежащем посередине между двумя звездами. Это означает, что звезды каким-то образом изменяют <a href="/info/1639232">окружающую область</a> <a href="/info/1339320">клеточного кортекса</a>. периода иптерфазы. Первым <a href="/info/1394719">видимым признаком</a> цитокинеза у животных клеток бывает образование небольшой складки <a href="/info/101065">плазматической мембраны</a>, появляющейся в анафазе и называемой <a href="/info/509122">бороздой деления</a> (рис. 13-65). Эта борозда всегда образуется в плоскости <a href="/info/1338994">метафазной пластинки</a>, под прямым углом к длинной оси <a href="/info/97968">митотического веретена</a> Если в анафазе на достаточно раннем этапе веретено переместить с помощью микроманипулятора, то наметившаяся борозда исчезнет и появится новая в соответствии с <a href="/info/1582946">новым положением</a> веретена. Изящные опыты на <a href="/info/169043">яйцах морского</a> ежа ЕсЫпагаскпгш показывают, что борозда дробления будет формироваться посередине между звездами, образовавшимися из <a href="/info/1696521">двух</a> центросом, даже если центросомы не связаны митотическим веретеном (рис. 13-66). Позднее, когда процесс зашел уже достаточно далеко, цитокинез будет продолжаться и в том случае, если веретено и его звезды удалить пипеткой или разрушить колхицином.
    Продолжительность метафазы в разных клетках заметно варьирует, Поздняя метафаза, во время которой дочерние хроматиды начинают разъединяться, переходит в раннюю анафазу. [c.99]

    В период ранней анафазы деление центромер осуществляется совершенно синхронно во всех хромосомах данной клетки, после чего хроматиды (теперь их можно именовать дочерними хромосомами) отталкиваются друг от друга и расходятся от экватора к полюсам. При этом в первую очередь отталкиваются центромерные участки хромосом, после чего расходятся к полюсам и сами хроматиды — дочерние хромосомы. [c.99]

    Крайне редко у гаплоидов в профазе первого деления мейоза в материнских клетках микроспор можно обнаружить двойной набор хромосом, очевидно, возникающий вследствие слияния клеток в ранней профазе или даже в археспории. Двойной хромосомный набор, по-видимому, образуется в анафазе археспория с формированием реституционного ядра при первом или втором, делениях мейоза. [c.120]

    У сохранившихся до колошения растений сорта Диамант изучали характер прохождения мейоза. Результаты проведенного цитогенетического анализа показали, что как в опытных вариантах, так и в контроле наблюдались нарушения мейоза (табл. 2). Однако частота этих нарушений в опыте и в контроле существенно не различалась. Так, в метафазе I (в опыте и в контроле) процент нормальных клеток с 21 бивалентом составлял 71—90%, частота аберраций хромосом в анафазе I была 10—14%, процент тетрад с микроядрами — 3,6%. Кроме показателей, приведенных в табл. 2, нами отмечались такие нарушения как пикноз, цито-миксис и экструзия хроматина, которые чаще наблюдались в ранней профазе и иногда носили массовый характер, охватывая целую группу близлежащих клеток (рис. 5). Как в контроле, так и в опытных вариантах наблюдали открытые биваленты в метафазе. [c.80]

    Почти полное исчезновение аберраций через 15 ч после прорастания пыльцевой трубки, когда хромосомы находятся в состоянии полной конденсации, объясняется образованием вокруг каждой хромосомы матрикса, удерживающего вместе хромосому, несмотря на возникновение разрывов в хромосомных нитях. В опытах с ооцитами 8с1ага было установлено, что облучение в течение первой метафазы и анафазы мейоза вызывает обычно образование большего количества структурных изменений хромосом (обнаруживаемых не в данном делении, а при изучении хромосом слюнных желез личинок ), чем облучение в период профазы (Рейнольдс, 1941). Однако почти все наблюдающиеся аберрации относятся к внутрихромосомным обменов между разрывами, возникшими в разных хромосомах, почти никогда не бывает (Боземан, 1943). Из этого следует, что, по-видимому, облучение в течение метафазы и анафазы вызывает появление разрывов, которые не югyт быть цитологически обнаружены во время деления, происходящего в момент облучения, и которые вызывают меньше межхромосомных структурных изменений, чем разрывы, возникшие при облучении во время интерфазы или ранней профазы. Если в расщепленной хромосоме происходит соединение сестринских хроматид в месте разрыва, то разрывы, появившиеся в метафазе или анафазе, могут вызвать при последующем делении летальный эффект. Описаны опыты, проведенные на различном материале, в которых клетки облучали, фиксировали через различные промежутки времени, а затем исследовали метафазы и анафазы в целью выявления хромосомных изменений. Таким образом, эти опыты сводились с основном к определению чувствительности хромосом на разных стадиях делений, предшествующих метафазе. Истолкование их осложняется тем, что облучение задерживает самый процесс деления, поэтому даже если известна шкала времени клеточного цикла для необлученного материала, то все же может возникнуть сомнение относительно стадии, достигнутой к моменту облучения той клеткой, которая находилась в стадии метафазы через 24 ч после облучения. В соответствии с данными, приведенными в табл. 59, результаты этих опытов как будто говорят о том, что по мере прохождения профазы клетки делаются менее чувствительными . В период интерфазы, до расщепления хромосом,, чувствительность клетки несколько ниже, чем в ранней профазе, так что наиболее высокая чувствительность наблюдается в профазе . [c.174]


    Как было уже упомянутое гл. VI, если в клетках процесс деления к моменту об/1учения уже настолько продвинулся, что (в отличие от клеток на более ранних стадиях) они не испытывают задержки деления, то облучение может привести к появлению в метафазе и анафазе картин, указывающих на клейкость поверхности хромосом. При этом в метафазе хромосомы слипаются, а разъединение сестринских хроматид в анафазе оказывается затрудненным. [c.250]

    По наблюдениям Тэнсли, Спира и Глюксмана (1938) и Ласницкого (1940), н тканях животных гибель многих клеток, наступающая при их попытке разделиться после окончания периода временной задержки, происходит на ранней стадии развития, эти клетки учитывают как дегенерирующие и они не попадают в подсчет метафаз или анафаз. Подобные случаи, вероятно, нельзя объяснить структурными изменениями хромосом, так как нарушение генного баланса или механические затруднения в анафазе, которые принимают за причину летального эффекта структурных изменений хромосом, не могут оказывать действия до разделения хромосомы. Такие случаи пока еще не находят себе объяснения. [c.251]

    Существенно отличается от митоза мейоз — процесс, приводящий к образованию половых клеток — гамет (рис. 4). Мейоз объединяет в себе два быстро следующих одно за другим деления. Они называются соответственно первым и вторым меиотическими делениями. В каждом из них различаются те же четыре стадии (профаза, метафаза, анафаза и тело-фаза), что и в митозе. Однако эти этапы, и особенно профаза первого мейотического деления (рис. 4, а), протекают в митозе и мейозе по-разному. В ранней профазе первого мейотического деления возникает веретено и в ядре начинают появляться хромосомы (рис. 4, а). Далее гомологичные хромосомы соединяются друг с другом. Этот процесс называют конъюгацией хромосом или синапсисом (рис. 4, б). Затем происходит удвоение соединившихся хромосом, так что образуются пучки из четырех хроматид — биваленты или тетрады (рис. 4, в). Остальные стадии первого деления (рис. 4, г е) протекают так же, как и при митозе, но в анафазе хромосомы в отличие от митоза отходят к полюсам парами (рис. 4, д). После телофазы первого мейотического деления быстро наступает профаза второго мейотического деления, но уже для двух клеток (рис. 4, ж). Далее процесс мейоза идет аналогично митозу — соответственно метафаза и анафаза (рис. 4, 3, и, к). Благодаря двум последовательным делениям возникают [c.12]

Рис. 11-44. Веретено в ранней анафазе. Видно, что оно построено из двух полуверетен (показанных черным и красным цветом), причем в каждом полувере-тене имеются кинетохорные и полюсные микротрубочки. Для простоты на схеме изображены сестринские хроматиды только двух хромосом, а большая часть полюсных микротрубочек не представлена. Рис. 11-44. Веретено в ранней анафазе. Видно, что оно построено из <a href="/info/1696521">двух</a> полуверетен (показанных черным и <a href="/info/1011214">красным цветом</a>), причем в каждом полувере-тене имеются кинетохорные и <a href="/info/510004">полюсные микротрубочки</a>. Для простоты на схеме изображены <a href="/info/510647">сестринские хроматиды</a> только <a href="/info/1696521">двух</a> хромосом, а большая часть <a href="/info/510004">полюсных микротрубочек</a> не представлена.
    Известны четыре стадии митоза профаза, метафаза, анафаза и телофаза. Когда митоз начинается, клетка принимает форму шара, а ядро изменяет свой вид — первый видимый признак того, что клетка готова к делению. Это обусловлено конденсацией хромосом в ранней профазе — процесса, который продолжается по мере исчезновения ядерной мембраны, так что в метафазе высоко конденсированные хромосомы оказываются локализованными в центре клетки, напоминающей по своему виду шар. На этой стадии клетки лишь слабо прикреплены к субстрату, и их легко отделить встряхиванием или мягкой трипсинизацией (рис. 10.2). Это лежит в основе метода синхронизации путем отбора митотических клеток (разд. 11.2). [c.123]

    Длительность митоза первичного ядра в пыльцевом зерне зависит от условий среды (температура, влажность воздуха), характера питания микроспор и особенностей развития тапе- тума пыльника. Так, в пыльцевых зернах традесканции длительность отдельных фаз митоза в период гаметогенеза следующая (при температуре 30°С) профазы — 30—34 ч (наибольшая часть этого времени приходится на раннюю профазу), метафазы и анафазы — по 0,5, телофазы — 0,2 ч. Весь митоз длится от 31,2 до 35,2 ч (Бкшоп, 1950). [c.157]

    Таким образом, делеции — источник фрагментов хромосом, которые располагаются между полюсами в анафазе и телофазе митоза. При анализе учитывают расстояние между анафаз-ными группами. Оно должно быть больше ширины самой группы. На ранних этапах анафазы, когда расстояние между группами хромосом на полюсах небольшое, не удается выявить всех нарушений. Не рекомендуется исследовать клетки в период поздней телофазы, когда уже начал образовываться фрагмопласт. [c.181]

    В анафазе I начинак т расходиться к полюсам не дочерние хроматиды каждой гомологичной хромосомы, а целые хромосомы, ранее конъюгировавшие. Деление заканчивается т б л о ф а з о и Т [c.97]

    Механика этого процесса остается загадочной. Скачкообразное движение хромосом в профазе не может осуществляться микротрубочками, которые в это время еще не контактируют с хромосомами. Более вероятно то, что скачкообразное движение хромосом опосредуется ядерным матриксом. Стабилизация в метафазе указывает, очевидно, на существование в это время равновесия действующих сил, т. е. что противоположные полюсы веретена оказывают одинаковое механическое воздействие на каждую отдельную хромосому. Интересно, что если с помощью облучения лазером нарушить связь метафаз-ной хромосомы с одним из полюсов, она немедленно начнет двигаться к другому полюсу, к которому она по-прежнему прикреплена. Предлагаемые модели хромосомного движения в анафазе должны как минимум давать объяснение, во-первых, способности хромосом ос гаваться неподвижными в ожидании анафазы и, во-вторых, одинаковой полярности микротрубочек в полу-веретене. Описанные результаты были получены сравнительно недавно, их объяснение представляет основнук> трудность для ряда ранних теорий анафазного движения. Простейшая модель, согласующаяся с этими результатами, предполагает, что механохимическим элементом, функционирующим в анафазе, является кинето-хор, перемещающийся вдоль микротрубочек [180]. [c.97]


Смотреть страницы где упоминается термин Анафаза ранняя: [c.39]    [c.419]    [c.174]    [c.222]    [c.148]    [c.253]    [c.12]    [c.13]    [c.24]    [c.25]    [c.440]    [c.460]    [c.178]    [c.74]    [c.160]    [c.440]    [c.459]    [c.460]    [c.53]    [c.30]   
Цитология растений Изд.4 (1987) -- [ c.96 ]




ПОИСК







© 2025 chem21.info Реклама на сайте