Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реология растворов полимеров эффективная вязкость

    Экспериментальная реализация стационарного растяжения [И] явилась важным этапом в развитии реологии текучих полимеров, так как она позволила показать различие зависимостей свойств полимеров, в первую очередь вязкости, от интенсивности деформации при растяжении и сдвиге. Давно известно, что увеличение скорости или напряжения сдвига приводит к уменьшению эффективной вязкости расплавов и растворов полимеров. Для одноосного растяжения более характерно повышение вязкости полимеров с увеличением скорости деформации или напряжения. [c.237]


    До настоящего времени эффективным остается феноменологический подход к решению многих задач реологии полимеров, что в полной мере относится к рассматриваемому здесь вопросу об обобщенных вязкостных характеристиках расплавов и растворов. Так, полезным приемом оказывается использование понятия об эффективном времени релаксации в максвелловском смысле (см. раздел 8.5 гл. 1). В таком случае время релаксации для начального состояния полимерной системы, когда у О, равно отношению начальных значений вязкости т)о и модуля высокоэластичности Gg (см. гл. 5). Подобная оценка начального времени релаксации 0q, характеризующего свойства полимерной системы, удобна , поскольку она не требует использования для этой цели каких-либо дополнительных теоретических представлений. [c.231]

    Поскольку в настоящее время имеется ряд хороших монографий, посвященных проблемам реологии и, в частности, вязкости полимеров (см., например, [38, 49]), мы ограничимся лишь кругом вопросов, касающихся механизма вязкого течения в связи со структурными и релаксационными принципами, изложенными выше. В частности, уравнение (V. 2) уже дает определенную почву для раздумий на что конкретно расходуется механическая энергия Из вполне очевидного ответа — на разрушение структуры системы — следует немедленно второй вопрос о влиянии скорости воздействия (мерой которой служит градиент у, имеющий размерность обратную времени) на это разрушение и, соответственно, на диссипацию энергии и величину вязкости. При этом выясняется, что всем полимерным системам в вязкотекучем состоянии присуща так называемая аномалия вязкости [термин неудачный, ибо отклонение от формулы (V. 1), вызванное естественными и физически легко интерпретируемыми причинами, вряд ли следует считать аномалией], проявляющаяся в зависимости эффективной (т. е. измеряемой в стандартных условиях, при фиксированных Я и -у) вязкости от Р или от у. Эта аномалия связана как с разрушением структуры системы, так и с накоплением высокоэластических деформаций в дополнение к пластическим (необратимым). Эти деформации и разрушение претерпевает суперсетка, узлы которой образованы микроблоками или, в меньшей мере, перехлестами единичных цепей. При переходе от расплава к разбавленному раствору относительный вклад последних в структуру сетки возрастает, точнее, выравниваются времена их жизни и времена жизни флуктуационных микроблоков. [c.163]

    Общие вопросы реологии иолн.мерных систем достаточно подробно описаны в ряде нзвестпых моиогра-фий . Для разбираемого здесь случая интересно выяснить, как влияют иа эффективную вязкость рабочих растворов полимеров следующие факторы 1) наагряже-иие сдвига (градиент скорости), 2) температура системы, 3) молекулярный вес полимера, 4) концентрация полимера в растворе. Кроме того, в некоторых случаях реологические свойства из.меняются во времени следует сделать ряд замечаний в соответствующем разделе главы и по этому поводу. [c.152]



Физико-химические основы переработки растворов полимеров (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость полимеров

Вязкость растворов ВМС

Вязкость растворов полимеров

Вязкость эффективная

Растворы полимеров

Реология



© 2024 chem21.info Реклама на сайте