Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нехромосомные генетические элементы

    У многих бактерий обнаружены нехромосомные генетические элементы плазмиды, умеренные фаги и мигрирующие элементы (транспозоны и 15-элементы). Для плазмид характерно стабильное существование в нехромосомном состоянии. Транспозоны и 15-элементы входят, как правило, в состав хромосом, но способны переходить из хромосомы в плазмиду, поэтому также могут быть отнесены к нехромосомным генетическим элементам. [c.143]


    Изучение нехромосомных генетических элементов обнаружило, что общий объем ДНК, входящий в их состав, превышает объем генома каждой особи. Таким образом, у прокариот большой объем генетической информации оказывается рассредоточенным [c.143]

    Все известные способы передачи генетической информации с помощью плазмид создают офомные возможности для интенсивных генетических обменов между клетками различных бактерий. Плазмидам и другим нехромосомным генетическим элементам принадлежит основная роль в передаче генетической информации по горизонтали . Можно предположить, что в природе любая генетическая информация может быть перенесена в любую клетку прокариот, если не прямо, то через посредников. Подтверждением этого могут служить данные по введению с помощью сконструированной плазмиды в бактериальную клетку эукариотной ДНК и ее репродукции там. [c.152]

    Важным признаком, определяющим принадлежность организмов к одному виду, является их способность скрещиваться и давать жизнеспособное потомство. Однако у прокариот размножение половым путем отсутствует, поэтому данный признак для определения видовой принадлежности к ним неприменим. Отнесение прокариотных организмов к одному или разным видам осуществляется в большой степени эмпирическим путем на основе анализа многих признаков, при этом генетическая информация, содержащаяся в нехромосомных генетических элементах, для определения видовой принадлежности не используется. [c.155]

    Особенность организации генетической информации в мире прокариот — рассредоточение большого ее объема в нехромосомных элементах. Из этого следуют две существенно различающиеся возможности горизонтального обмена генетической информацией первая связана с хромосомной, вторая — нехромосомной ДНК. Из трех основных процессов, приводящих у прокариот к обмену хромосомной ДНК, наиболее совершенным является процесс конъюгации, так как он обеспечивает возможность более полного обмена генетическим материалом двух клеток. (При благоприятных условиях возможно вхождение в реципиентную клетку всей донорной ДНК.) Однако эффективность механизмов генетической рекомбинации в этих процессах высока для близкородственных прокариотных организмов. Обмен участками хромосомной ДНК у бактерий в большинстве случаев ограничен пределами одного вида. Возможность горизонтальной передачи генетической информации на большие таксономические расстояния реализуется при переносе нехромосомных молекул ДНК, способных к автономной репликации. [c.154]

    Генетическому материалу хромосомного набора геному) соответствует плазмой, включающий весь генетический материал цитоплазмы. Подобно генам хромосом, в структурных элементах цитоплазмы — пластидах, кинетосомах, митохондриях, центросомах и основном ее веществе находятся материальные носители нехромосомной наследственности — плазмогены. Они могут определять развитие некоторых признаков клетки, способны удваиваться. Если плазмогены утрачиваются клеткой, то хромосомы ие могут их воспроизвести, при делении материнской клетки они распределяются между дочерними клетками. [c.115]



Смотреть страницы где упоминается термин Нехромосомные генетические элементы: [c.144]   
Микробиология Издание 4 (2003) -- [ c.143 ]




ПОИСК







© 2025 chem21.info Реклама на сайте