Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Информация генетическая передача

    В роли мономерных единиц при хранении генетической информации выступают молекулы азотистых оснований — производных пурина и пиримидина. Полимерная молекула, осуществляющая как хранение, так и передачу генетической информации,— это дезоксирибонуклеиновая кислота (ДНК). Близкий ей по строению полимер, рибонуклеиновая кислота (РНК), помогает при [c.105]


    Нуклеиновые кислоты, являющиеся основной органической частью ядер клеток, играют главную роль в хранении и передаче генетической информации. Полимерные цепочки нуклеиновых кислот построены из нуклеотидов, которые, состоят из азотистого основания, пентозы и фосфатной группы. Углеводным фрагментом обычно является В-рибоза (в рибонуклеиновых кислотах, сокращенно РНК) или 2-дезокси-В-рибоза (в дезоксирибонуклеиновых кислотах, сокращенно ДНК). Азотистыми основаниями нуклеотидов могут быть производные пурина (соединение 23 в табл. 11) — аденин, гуанин, ксантин и гипоксантин — и производные пиримидина (соединение 30 в табл. И) — урацил, тимин и цитозин. В табл. 60 представлены структурные формулы и нумерация атомов наиболее распространенных пуриновых и пиримидиновых оснований, входящих в состав нуклеотидов. Для краткого обозначения азотистого основания принята система трехбуквенных символов (табл. 60). Эти обозначения, представляющие собой первые три буквы названия соединения, следует употреблять исключительно для обозначения свободных оснований (например, ига — урацил) или их замещенных производных (например, рига — фторурацил). [c.355]

    Репликация — многоэтапный процесс удвоения молекул ДНК у эукариот (РНК — у прокариот) при участии специальных ферментов сопровождается удвоением хромосом, обеспечивает копирование генетической информации и передачу ее в поколениях (вероятность ошибок при репликации не превышает 10 скорость — около 100 нуклеотидов в секунду для эукариот и до 1000 — для бактерий). [c.191]

    Особенность организации генетической информации в мире прокариот — рассредоточение большого ее объема в нехромосомных элементах. Из этого следуют две существенно различающиеся возможности горизонтального обмена генетической информацией первая связана с хромосомной, вторая — нехромосомной ДНК. Из трех основных процессов, приводящих у прокариот к обмену хромосомной ДНК, наиболее совершенным является процесс конъюгации, так как он обеспечивает возможность более полного обмена генетическим материалом двух клеток. (При благоприятных условиях возможно вхождение в реципиентную клетку всей донорной ДНК.) Однако эффективность механизмов генетической рекомбинации в этих процессах высока для близкородственных прокариотных организмов. Обмен участками хромосомной ДНК у бактерий в большинстве случаев ограничен пределами одного вида. Возможность горизонтальной передачи генетической информации на большие таксономические расстояния реализуется при переносе нехромосомных молекул ДНК, способных к автономной репликации. [c.154]


    Центральное положение понятия информации в кибернетике объясняется тем, что она изучает машины и живые организмы с точки зрения их способности воспринимать определенную информацию, сохранять ее в памяти , передавать по каналам связи и перерабатывать в сигналы , направляющие их деятельность в соответствующую сторону. Передачу признаков от клетки к клетке и от организма к организму также стали рассматривать как передачу информации (генетическая информация). [c.440]

    Изменяется ли геном Насколько стабильны генетическая информация и ее передача Изучая наследование моногенных заболеваний или таких полиморфных систем, как группа крови АВО или MN, мы не можем не поразиться точности передачи генетической информации, указывающей на стабильность генома. В конце концов напрашивается вывод, что встречающиеся иногда исключения вполне можно объяснить не биологическими факторами, а скорее такими, как, например, ложное отцовство. Единственное, что в какой-то степени ослабляет нашу веру во всеохватывающую надежность наследственных механизмов,-это новые мутации (разд. 5.1), но их частота обычно очень низка, и, кроме того, однажды возникнув, они подчиняются правилам генетической передачи. [c.144]

    Можно назвать еще некоторые другие жизненно важные функции белков. Это, в частности, экспрессия генетической информации, генерирование и передача нервных импульсов, способность поддерживать онкотическое [c.21]

    Информация-накопление, передача и экспрессия генетической информации, [c.7]

    В настоящее время можно дополнить эту основную схему передачи генетической информации в живой клетке и представить ее в более полной форме  [c.487]

    Процесс передачи генетической информации можно изобразить с помощью приведенной ниже схемы, к которой следует лишь немногое добавить, чтобы получить представление о передаче этой информации на молекулярном уровне. [c.109]

    Общая схема передачи генетической информации такова  [c.54]

    Следует обратить внимание на то, что фосфор и здесь входит в молекулу в четверной координации, окруженный ионами кислорода. Из нуклеотидов строятся в клетках молекулы нуклеиновых кислот, обеспечивающих передачу генетической информации. [c.183]

    В 1960 г. сразу в нескольких лабораториях был открыт фермент РНК-полимераза, осуществляющий синтез РНК на ДНК-матрицах. Таким образом, идея Ф. Крика о передаче генетической информации от ДНК к белку через РНК (ДНК — РНК — белок), высказанная им еще в середине 1950-х годов, приобрела конкретное содержание (рис. 1). [c.7]

    В принципе любое соединение, которое содержит одновременно и кислотную функциональную группу, и аминогруппу, является аминокислотой. Однако чаще всего этот термин применяется для обозначения карбоновых кислот, аминогруппа которых находится в а-положении по отношению к карбоксильной группе. Ни один из известных нам живых организмов не обходится без аминокислот. Аминокислоты, как правило, входят в состав полимеров — белков. Белки служат питательными веществами, регулируют обмен веществ, способствуют поглощению кислорода, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения и главным опорным материалом живых организмов, участвуют в передаче генетической информации и т. д. [c.382]

    Нуклеиновые кислоты (НК) - важнейшие биополимеры, осуществляющие хранение и передачу генетической информации в живой клетке. [c.42]

    Всякая передача информации не идеальна — в ходе передачи происходит частичное разрушение информации вследствие помех или ошибок. Такие помехи или ошибки называются шумами. Рассмотрим передачу генетической информации (см. [36]). [c.35]

    До сих пор не раскрыты в деталях молекулярные механизмы передачи генетической информации, закодированной в нуклеотидной последовательности ДНК. Различают три основных этапа реализации генетической информации. На первом этапе-этапе репликации происходит образование дочерних молекул ДНК, первичная структура которых идентична родительской ДНК (копирование ДНК). Репликация ДНК является ключевой функцией делящейся клетки и частью таких биологических процессов, как рекомбинация, транспозиция и репарация. На втором этапе, названном транскрипцией, генетическая информация, записанная в первичной структуре ДНК, переписывается в нуклеотидную последовательность РНК (синтез молекулы РНК на матрице ДНК). На третьем этапе-этапе трансляции генетическая информация, содержащаяся уже в нуклеотидной последовательности молекулы РНК, переводится в аминокислотную последовательность белка. Далее представлены основные итоги исследований и наши представления о биосинтезе полимерных молекул ДНК, РНК и белка, полученные к середине 1996 г. [c.478]

    Без знания строения и свойств биополимеров и биорегуляторов невозможно познание сущности биологических процессов. Так, установление строения таких биополимеров, как белки и нуклеиновые кислоты, стимулировало развитие представлений о матричном биосинтезе белка и роли нуклеиновых кислот в хранении и передаче генетической информации. [c.13]

    Роль комплементарных взаимодействий в осуществлении биологической функции ДНК. Комплементарность цепей составляет химическую основу важнейшей функции ДНК — хранения и передачи наследственных признаков. Сохранность нуклеотидной последовательности является залогом безошибочной передачи генетической информации. Однако нуклеотидная последовательность ДНК под воздействием различных факторов может подвергаться изменениям, которые называют мутациями. [c.446]


    Шмальгаузен впервые перевел теорию эволюции на информационный язык. Биогеоценоз получает информацию о состоянии популяции посредством обратных связей и, тем самым, включает в себя специфический механизм преобразования этой информации в управляющие сигналы и средства передачи последних на популяцию . Соответствующая схема показана на рис. 17.11. Генетическая информация передается от поколения к поколению только после ее преобразования в биогеоценозе, частью которого является сама популяция. [c.561]

    Гены — это структуры, которые обеспечивают сохранение видов из поколения в поколение путем передачи информации от материнской клетки к дочерней. В каждом полимере ДНК содержится несколько основных единиц генетической информации. Единственной структурной переменной в цепи ДНК, ответственной за хранение информации, является последовательность четырех оснований. Наименьшая единица информации в ДНК — кодон — состоит из последовательности трех нуклеотидных остатков. Ксдон контролирует включение данной аминокислоты в определенный белок. [c.483]

    Все известные способы передачи генетической информации с помощью плазмид создают офомные возможности для интенсивных генетических обменов между клетками различных бактерий. Плазмидам и другим нехромосомным генетическим элементам принадлежит основная роль в передаче генетической информации по горизонтали . Можно предположить, что в природе любая генетическая информация может быть перенесена в любую клетку прокариот, если не прямо, то через посредников. Подтверждением этого могут служить данные по введению с помощью сконструированной плазмиды в бактериальную клетку эукариотной ДНК и ее репродукции там. [c.152]

    Выше мы рассмотрели организацию генетического аппарата прокариот, осуществляющего передачу генетической информации от одного поколения к следующему, т.е. по вертикали , обратив внимание на такие его черты, как стабильность и точность функционирования. Однако стабильность генетического аппарата не абсолютна и при всей надежности изменения являются его неотъемлемым свойством. Для прокариот характерна большая способность к генетическим изменениям, являющимся результатом мутаций, а также развития путей горизонтального переноса генов между бактериальными клетками. [c.153]

    Саморегулирование растения осуществляется системой управления, в основе которой лежат восприятие, переработка, хранение и передача информации генетическими, физиологическими (биомембраны, фитогормоны и ингибиторы, фитохромная система) и экологическими (адаптивными) регуляторами их функционирование обеспечивает развитие и -динамическое стационарное состояние (гомеостаз) растения. [c.530]

    Нуклеиновые кислоты содержатся в каждой живой клетке. Они принимают решающее участие в биосинтезе белка и ответственны за передачу генетической информации. В настоящее время уже многое стало известно о способе передачи такой информации, которая осуществляется вторичной структурой ДНК, имеющей вид спирали из двух витков дезоксирибозофосфатной цепи, связанных с помощью водородных связей. Водородные связи соединяют остаток аденина из одного витка спирали с торчащим напротив остатком тимина второго витка, а также остаток цитозина одного витка с остатком гуанина другого. Такой порядок связывания двух дезоксирибозофосфатных цепей строго специфичен водородная связь не может образоваться между аденином одной цепи и гуанином или цитозином другой. Не может она возникнуть и между цитозином одной цепи и тимином или аденином другой и т. д. Такая специфичность определяется строением пуриновых и пиримидиновых оснований или их взаимным расположением, а возможно, и тем и другим. Приведенная схема иллюстрирует условия образования водородных связей  [c.355]

    Используемая для краун-эфиров сокращенная номенклатура довольно проста первое число означает общее число атомов в кольце, а второе — общее число гетероатомов. Легко усмотреть аналогию между такими комплексами, имеющими полость для связывания лиганда Ь, и активным центром фермента, специфически узнающим свой субстрат. Размер макроцикла может меняться и тем самым обеспечивать связывание лигандов разных размеров. Циклические полиэфиры типа краун сравнительно легко можно получить и подвергнуть разнообразным структурным модификациям. Эту область химии Крам предложил назвать химией до-норно-акцепторного комплексообразования [134—136]. Напомним также о гипотезе замка и ключа , предложенной Фишером в 1894 г. для описания структурного соответствия между ферментом и его субстратом в ферментсубстратном комплексе. Помимо ферментативного катализа и ингибирования комплексообразование играет первостепенную роль в таких биологических процессах, как репликация, хранение и передача генетической информации, иммунный ответ и транспорт ионов. В настоящее время накоплено уже достаточно сведений о структуре таких комплексов, чтобы подтолкнуть химиков-органиков к созданию высокоструктурированных молекулярных комплексов и к изучению специфического химизма процессов комплексообразования. [c.266]

    Аминокислоты входят в состав белков, которые служат питательными веществами, регулируют обмен веществ, способствуют поглощению кислорода, играют важную роль в функционировании nqaBHoii системы, являются механической основой мышечной гкани, участвуют в передаче генетической информации и т.д. [c.236]

    M. Гершензон и др.. Исследование возможности передачи генетической информации от РНК к ДНК при репродукции вирусов ядерного поли-эдроза, Наукова думка , Киев, 1971. [c.604]

    Основа молекулярной генетики — молекула дезоксирибонуклеиновой кислоты (ДНК). Генетическая информация зашифрована в молекуле ДНК с помощью кода, который мы скромно называем универсальным. Это означает, что если известно, как происходит передача наследственной информации в одной клетке, то известен также молекулярный механизм этой передачи в любых других клетках, причем не только того же органа или организма, но и вообще у всех живых существ. Имеются, конечно, различия в регуляции наследственности у прокариотов и эукариотов, но общая ситуация прекрасно определена Моно Что применимо к Е. oli, применимо и к слону . Наследствен-кость — это биохимия ДНК [c.7]

    ТРАНСЛЯЦИЯ (от лат. translatio-передача), программируемый генами процесс синтеза белка. Посредством Т. осуществляется реализация генетич. информации нуклеиновых к-т (см. Генетический код). [c.620]

    Биосинтез белков в клетках листьев зависит от экспрессии генетической информации трех различных геномов ядра, хлоропластов и митохондрий. Эта генетическая информация проявляется через три генетические системы, включающие ДНК, ДНК-полимеразу, РНК-полимеразу и аппарат белкового синтеза (рибосомы, транспортные РНК, ферментный набор...). Ядерные гены подчиняются закону двуродительского наследования, тогда как гены органелл имеют исключительно материнское наследование. Именно эти носители генетической информации с их собственными законами передачи определяют структуру и свойства белков листьев, а также содержание в них белков, липидов, волокон и т. п. Более подробные сведения о передаче и проявлении генетической информации в хлоропластах можно получить из литературных источников [25, 27, 1П , как и по тем же вопросам применительно к митохондриям [67]. [c.237]

    Дальнейшее развитие биологии и медицины почти невозможно без применения методологических принципов современной биологической химии. Установление способов хранения и передачи генетической информации и принципов структурной организации белков и нуклеиновых кислот, расшифровка механизмов биосинтеза этих полимерных молекул, а также молекулярных механизмов трансформации энергии в живых системах, установление роли биомембран и субклеточных структур, несомненно, способствуют более глубокому проникновению в сокровенные тайны жизни и выяснению связи между структурой индивидуальных химических компонентов живой материи и их биологическими функциями. Овладение этими закономерностями и основополагающими принципами биологической химии не только способствует формированию у будущего врача диалектикоматериалистического понимания процессов жизни, но и дает ему новые, ранее недоступные возможности активного вмешательства в патологические процессы. Этими обстоятельствами диктуется необходимость изучения биологической химии студентами медицинских институтов. [c.9]

    Доказано индуцирующее действие кортизона и гидрокортизона на синтез в ткани печени некоторых белков-ферментов триитофаниирролазы, тирозинтрансаминазы, серии- и треониндегидратаз и др., свидетельствующее, что гормоны действуют на первую стадию передачи генетической информации-стадию транскрипции, способствуя синтезу мРНК. [c.277]

    В осуществлении каждого из указанных процесов специфическое участие принимает ряд белков и нуклеиновых кислот, хотя конкретные молекулярные механизмы этих превращений еще не полностью раскрыты. Все три указанных процесса имеют важное значение в формировании зрелой молекулы мРНК. Однако наибольший интерес исследователи проявляют к выяснению молекулярного механизма сплайсинга, который должен обеспечить, во-первых, постепенное и высокоточное вырезание интронов из первичного транскрипта и, во-вторых, сшивание образующихся фрагментов-экзонов- конец в конец . Любые отклонения или смещения границ в процессе вырезания интронов и сшивания экзонов даже на один нуклеотид могут привести не только к глубокому искажению смысла в кодирующих последовательностях, но и к нарушению передачи генетической информации и развитию патологии. [c.490]

    В последовательности ДНК—> РНК—> Белок недоставало сведений о том, каким образом происходят расшифровка наследственной информации и синтез специфических белков, определяющих широкое разнообразие признаков живых существ. В настоящее время выяснены основные процессы, посредством которых осуществляется передача наследственной информации репликация, т.е. синтез ДНК на матрице ДНК транскрипция, т.е. синтез РНК на матрице ДНК или перевод языка и типа строения ДНК на молекулу РНК (см. ранее), и трансляция—процесс, в котором генетическая информация, содержащаяся в молекуле мРНК, направляет синтез соответствующей аминокислотной последовательности в белке. Напомним, однако, что многие тонкие механизмы транскрипции и трансляции окончательно еще неясны. [c.511]

    В чем же конкретно состоит биохимическое единство жизни Общее основано на единстве конструктивных, энергетических процессов и механизмов передачи генетической информации. А. Клюйвер доказал два первых положения все живые организмы построены из однотипных химических макромолекул, универсальной единицей биологической энергии служит АТФ, в основе физиологического разнообразия живых существ лежит несколько основных метаболических путей. Что касается последнего положения, [c.15]

    В 1970 г. была открыта обратная транскрипция — передача генетической информации от РНК к ДНК (Темин, Балтимор) [c.263]

    Нуклеиновые кислоты играют главную роль в передаче на-гдственных признаков (генетической информации) и управле-и процессом биосинтеза белка. История их изучения начинает-, с выделения швейцарским химиком Ф. Мишером (1869) из ёр клеток вещества кислотного характера, названного им клеином и получившего позже название нуклеиновые кислоты. нуклеиновым кислотам был проявлен большой интерес, так как 0,6 до их выделения было установлено, что материал клеточного ра обладает способностью к наследованию признаков. За срав-ятельно короткий срок в области нуклеиновых кислот были поданы значительные результаты, которые смело можно отнести "наиболее выдающимся успехам современного естествознания. [c.431]


Смотреть страницы где упоминается термин Информация генетическая передача: [c.399]    [c.106]    [c.581]    [c.51]    [c.263]    [c.35]    [c.36]    [c.354]    [c.105]    [c.16]   
Биологическая химия Изд.3 (1998) -- [ c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Информация



© 2025 chem21.info Реклама на сайте