Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетический материал, потеря

    Если одни гены избирательно инактивируются или попеременно включаются и выключаются, то другие в некоторых случаях необратимо утрачиваются в процессе клеточной дифференцировки. В хромосомах отдельных клеток во время митоза, по-видимому, имеет место генетическая рекомбинация. Был обнаружен кроссинговер между сестринскими хроматидами. Однако если при этом происходит обмен равными количествами генетического материала, то изменения генетики дочерних клеток не наступает. С другой стороны, если в одной молекуле ДНК оказываются две и более одинаковые последовательности оснований, то возможен неравный кроссинговер (гл. 16, разд. Ж, 3) с потерей генетического материала одной из дочерних клеток. По существу в этом может состоять предопределенная программа дифференциации для некоторых клеток. [c.363]


    В противоположность им симметричные обмены, если они завершены, не вызывают потери генетического материала и не препятствуют делению клетки в анафазе. Поэтому такие аберрации называют "стабильными". Они являются потенциально более опасными, чем нестабильные аберрации, по крайней мере в соматических клетках, поскольку они могут пройти через последующие циклы деления. Их можно определить, только используя новейшие методики выявления исчерченности хромосом. [c.93]

    Интересные результаты были получены при исследовании умеренных бактериофагов — бактериальных вирусов, генетический материал которых может включаться в геном бактерий (гл. 15, разд. Г.8). Иногда включение вирусных генов в энтеробактерию вызывает изменение структуры О-антигена. Заражение одним вирусом приводит к потере О-ацетильных групп некоторыми сахарными остатками другие вирусы вызывают появление дополнительных заместителей. Под влиянием ряда вирусов в определенных местах молекул олигосахаридов а-связи меняются на р-овязи или связи 1,4 на связи 1,6. Очевидно, вирусные гены [c.393]

    Различные специализированные типы клеток одного и гого же высшего растения или животного часто выглядят совершенно по-разному (схема 1-2) Это кажется парадоксальным, поскольку все клетки многоклеточного организма являются потомками одной и той же клетки-предшественницы, а именно оплодотворенной яйцеклетки. Общее происхождение подразумевает наличие одинаковых или сходных генов. Как же возникают различия В редких случаях клетки при специализации теряют часть генетического материала крайним примером могут служить эритроциты млекопитающих, у которых в ходе дифференцировки теряется ядро. Однако подавляющее большинство клеток почти всех видов растений и животных сохраняет всю генетическую информацию, содержащуюся в оплодотворенной яйцеклетке. В основе специализации лежат не потеря или приобретение генов, а изменение в их экспрессии. [c.37]

    Другое распространенное половое различие состоит в том, что самок больше заботит вопрос о том, с кем они спариваются, чем самцов. Одна из причин этого беспокойства как у самцов, так и у самок объясняется необходимостью избежать спаривания с представителем какого-то другого вида. Гибридизация нежелательна по ряду причин. В некоторых случаях, как при копуляции человека с овцой, зародыш вообще не образуется, так что никаких потерь не происходит. Однако при скрещиваниях между представителями более близких видов, например между лошадью и ослом, потери, во всяком случае для партнера женского пола, могут быть значительными. Вполне вероятно, что в матке лошади начнет развиваться зародыш, которого ей придется затем вынашивать в течение одиннадцати месяцев. Ей придется не только израсходовать значительную долю своего общего родительского вклада в форме питательных веществ, поглощаемых зародышем через плаценту, а впоследствии и в форме молока, но главным образом потерять много времени, которое можно было бы потратить на выращивание других детенышей. А когда рожденный ею мул достигает зрелости, то оказывается, что он стерилен. По-видимому, это происходит потому, что хотя хромосомы лошади и хромосомы осла достаточно сходны, чтобы сотрудничать в построении здорового и сильного тела мула, они недостаточно сходны, чтобы совместно проделать мейотические деления. Какой бы ни была истинная причина, очень значительный вклад матери в выращивание мула с точки зрения ее генов совершенно бессмыслен. Кобылы должны быть очень осмотрительными, чтобы копулировать непременно с жеребцом, а не с ослом. Если перейти на генетический язык, то любой лошадиный ген, который говорит Тело, если ты самка, копулируй с любым самцом, будь то осел или лошадь , может оказаться в тупике — в теле мула, а материнский вклад в этого маленького мула нанесет значительный урон ее возможностям выращивать фертильных лошадей. Что касается самца, то его потери в случае спаривания с представителем чужого вида меньше, и хотя он при этом может ничего и не выиграть, есть основания предполагать, что самцы уделяют меньше внимания выбору сексуальных партнеров. Во всех изученных случаях это подтвердилось. [c.129]


    По аналогии с исключением профага X (гл. 15, разд. Г, 8) из хромосомы Е. oli такая потеря генов должна происходить в специфических сайтах (участках) ДНК. Постоянная потеря генетического материала может, по-видимому, происходить при дифференцировке плюрипотентных стволовых клеток, образующих клетки крови. Из указанных плюрипотентных клеток сначала формируются три другие линии стволовых клеток, а именно, миелоидные, эритрондные и лимфоидные, которые подвергаются дальнейшей дифференцировке, как показано на схеме. [c.364]

    Нарушения биосинтеза, вызванные недостатком некоторых вещ еств. Биосинтез гемоглобина может нарушаться не только в тех случаях, когда имеются какие-то неправильности в структуре генетического материала, но и при недостатке некоторых веществ, необходимых для его синтеза. В случае недостатка железа в пище или при потерях крови, включающих и потерю железа, развивается микроцитарная анемия, характеризующаяся малыми размерами эритроцитов и понижением содержания в них НЬ. Железо необходимо на двух этапах синтеза порфиринов при конденсации глицина и сукцинил-кофермента А с образованием б-аминолевулиновой кислоты и при внедрении железа в протопорфирин IX, поэтому отсутствие его блокирует синтез сразу в двух местах. Этот недостаток легко восполняется принятием внутрь соли двухвалентного железа, обычно в виде карбоната. [c.147]

    Размножение нормальных клеток регулируется ингибирующими и стимулирующими молекулами, которые являются соответственно продуктами генов-супрессоров опухолевого роста и протоонкогенов. Проявление раковых свойств у клетки может быть результатом как потери или инактивации обеих клеточных копий гена-супрессора, так и амплификации или гиперактивации одной из двух копий протоонкогена Наследуемые нарушения пролиферативного контроля могут быть вызваны также внедрением в клетку чужеродного вирусного генетического материала. Ретровирусы могут сами становиться онкогенными, захватывая копию клеточного протоонкогена клетки-хозяина и превращая его в онкоген они могут также создавать онкоген в клетке, действуя как инсерционный мутаген и внедряясь в ее геном рядом с протоонкогеном. Хотя полагают, что большинство онкологических заболеваний у человека вызывается не вирусами, обнаруживаемые в опухолевой ДНК мутации часто затрагивают те же протоонкогены, что и найденные при изучении ретро-вирусов. Способы превращения протоонкогенов в онкогены в опухолях у человека включают точковые мутации, амплификацию генов, а также хромосомные транслокации, которые могут привести к нарушению контроля экспрессии этого протоонкогена или к его соединению с другим геном с последующим синтезом нового белка. Подобно этому, гены-супрессоры опухолевого роста могут быть функционально утеряны в результате мутаций самого разного характера люди, унаследовавшие от родителей делецию или дефектную копию одного из таких генов, могут проявить выраженную предрасположенность к определенному типу рака, что демонстрирует пример с ретинобластомой. Молекулярнобиологический анализ опухолевых клеток от больных, страдающих одной из наиболее распространенных форм рака, выявил сложный и неоднородный спектр генетических повреждений, включая и активацию онкогенов и потерю генов-супрессоров опухолевого роста. Эти данные являются отражением случайного характера эволюционного процесса, в ходе которого возникает рак, и говорят о том, что каждая злокачественная опухоль, с молекулярной точки зрения уникальна. [c.481]

    Обычно по характеру изменений генотипа мутации делят на две большие группы [2, 3] крупные перестройки и точечные мутации. Крупные перестройки включают потерю генетического материала (хромосомные разрывы, деле-ции) или его обмен (транслокации, инверсии, удвоения, вставки). Точечные мутации могут быть определены как мутации, при которых изменяется, выпадает (делеция) или добавляется (вставка) лишь одна пара пурин-пиримидино-вых оснований ДНК аденин — тимин (А — Т) или гуанин — цитозин (Г — Ц). [c.5]

    В классификации, базирующейся на размерах сегментов генома, подвергающихся преобразованиям, мутации разделяют на геномные, хромосомные и генные. При геномных мутациях у ор-ганизма-мутанта происходит внезапное изменение числа хромосом, кратное целому геному. Если через 2п обозначить число хромосом в исходном диплоидном геноме, то в результате геномной мутации, называемой полиплоидизацией, происходит образование полиплоидных организмов, геном которых представлен 4п, вп и т.д. хромосомами. В зависимости от происхождения хромосом в полиплоидах различают аллополиплоидию, в результате которой происходит объединение при гибридизации целых неродственных геномов, и аутополиплоидию, для которой характерно адекватное увеличение числа хромосом собственного генома, кратное 2п. При хромосомных мутациях происходят как изменение числа отдельных хромосом в геноме (анеуплоидия), так и крупные перестройки структуры отдельных хромосом. Последние получили название хромосомных аберраций. В этом случае наблюдаются потеря (делеции) или удвоение части (дупликации) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсии), а также перенос части генетического материала с одной хромосомы на другую (транслокации) (крайний случай -объединение целых хромосом). [c.277]

    Продемонстрированные Тонегавой У(В)1-перестройки (случайное использование примерно 100 У-генов, 20 О-генов и 41-генов и случайное объединение тяжелых и легких цепей для образования гетеродимерного связывающего центра) дают возможность продуцировать большое потенциальное разнообразие белков из сравнительно небольшого количества генетического материала. Кроме того, иногда слияние V, В, и I приводит к добавлению или потере оснований, увеличивая, таким образом, разнообразие. [c.109]


    Нам остается сделать вывод, что гены, важные для эволюции человека в течение периода, когда происходило преобразование его мозга, совершенно неизвестны. Поскольку большая часть ДНК человека не кодирует белков и либо вообще не нужна, либо участвует в регуляции генной активности (разд. 4.8), можно предположить, что соответствующие изменения локализованы именно в этой, не содержащей структурных генов ДНК [1993]. Такие изменения могли произойти в неэкспрессируемых участках ДНК, относительно которых постулируется, что они имеют регуляторные функции. Возможно, что нуклеотидные последовательности ДНК, несущественные для реализации функций структурных генов, необходимы для развития, и, следовательно, изменения таких последовательностей могли оказать особое влияние на преобразования функции мозга. Однако эта идея весьма спекулятивна и носит слишком общий характер. Чтобы сформулировать более конкретные гипотезы, необходимо больше знать о генетической детерминации эмбрионального развития и о генах, влияющих на межвидовую изменчивость поведенческих признаков (гл. 8). Даже если исключить из рассмотрения все фенотипические эффекты и ограничиться анализом таких известных генетических феноменов, как хромосомные перестройки, добавление или потеря материала хромосом, изменчивость сателлитной ДНК и аминокислотных последовательностей белков, все равно придется констатировать слабое понимание многих аспектов эволюционного процесса. Например, мы не знаем, как происходит фиксация хромосомных перестроек в популяциях. Идентичны ли механизмы их фиксации тем процессам, которые приводят к фиксации аминокислотных замен Какие элементарные события привели к образованию разных типов сателлитной [c.27]


Смотреть страницы где упоминается термин Генетический материал, потеря: [c.219]    [c.95]    [c.38]    [c.411]    [c.99]    [c.179]   
Биохимия Том 3 (1980) -- [ c.363 ]




ПОИСК







© 2025 chem21.info Реклама на сайте