Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтезирующая единица, размеры

    Вопрос о возможной организации тилакоидных мембран в фотосинтезирующие единицы, или квантосомы, пока не решен [86, 87]. Как было показано методом замораживания — травления, диаметр квантосом 20 нм, а толщина - 10 нм. Однако некоторыми исследователями были выявлены лишь частицы кубической формы меньшего размера которые могли быть молекулами рибулозодифосфат-карбоксилазы (ребро куба - 12 нм гл. 7, разд. К, 3,ж) или молекулами фактора сопряжения с синтезом АТР (ребро куба 10 нм, разд, Д, 6). [c.46]


    В фотосинтезирующих клетках активные пигменты расположены внутри ламеллярных мембран в виде функционально-организованных единиц. У фотосинтезирующих эукариот (высших растений и большинства водорослей) несущие пигмент мембраны заключены в специфических органеллах — хлоропластах. У высших растений морфологические различия между хлоропластами невелики, в то время как у водорослей форма и размеры хлоропластов значительно варьируют. hlorella, например, имеет единственный чашевидный хлоропласт, тогда как хлоропласты некоторых видов Spirogyra представляют собой длинные, спирально закрученные образования, лежащие вдоль всей клетки. [c.329]

    Химические и биохимические методы трудно приспособить для непрерывного наблюдения за скоростью фотосинтеза, поэтому физикохимические методы давно привлекали внимание исследователей в этом отношении. В современных количественных исследованиях процессов метаболизма манометрические измерения приобрели преобладающее значение. Биохимики нашли, что почти каждая биохимическая реакция может проводиться таким образом, чтобы происходило поглощение или выделение газа, и это часто дает наилучший способ для измерения ее скорости. Реакции гемоглобина с кислородом и окисью углерода были первыми, для которых этот метод был разработан Холдейном и Баркрофтом затем он был применен для изучения дыхания и фотосинтеза. Со времен Сакса [3] получил известность и широкое распространение приближенный метод измерения объема выделенного кислорода путем подсчета пузырьков . В спокойном растворе с определенным поверхностным натяжением пузырьки газа, отделяющиеся от листьев, имеют приблизительно одинаковую величину, так что скорость образования газа может быть вычислена путем умножения числа пузырьков, образующихся в единицу времени, на объем одиночного пузырька. Этот метод прост и чувствителен, но явно чреват ошибками, вызываемыми различием в смачиваемости листовой поверхности, слиянием мелких пузырьков в крупные, влиянием конвекционных токов или размешивания на размер пузырьков и подобными осложнениями. Многие авторы [15, 21, 29, 35, 45] старались усовершенствовать этот метод и сделать подсчет пузырьков автоматическим. Обсуждение этих попыток можно найти в книге Спёра [40]. Важное возражение против этого метода было выдвинуто Гесснером [63] пузырьки постоянного размера могут образовываться только в спокойной воде, в которой фотосинтезирующее растение окружается вскоре слоем воды со щелочной реакцией, с малым содержанием углекислоты и пересыщенной кислородом, а каждый из этих трех факторов может сильно влиять на скорость фотосинтеза. [c.255]

    В преобладающем количестве исследований желательно брать в опыт наибольшую возможную площадь листа. Чем больше размеры манометрического сосудика, тем большую площадь листа можно брать в опыт и тем большее число растений может использоваться при определении фотосинтеза у целого листа. При больших площадях листа в опыте меньше сказываются индивидуальные различия между параллельными пробами. Количество выделяемого в единицу времени кислорода пропор-дионально размеру фотосинтезирующего листа или его части. Поэтому при больших размерах взятой в опыт пробы можно проводить более частые отсчеты показаний манометров. [c.71]


    Исследования, начатые Эмерсоном и Арнольдом [550] и интерпретированные Гаффроном и Волем i[662], позволили выяснить, что и у фотосинтезирующих бактерий, и у растений молекулы хлорофилла для работы всегда объединяются в так называемую фотосинтетическую единицу , состоящую у растений, как правило, из нескольких сотен, а у пурпурных бактерий, вндиио, из 40 молекул [515, 1026]. По крайней jaejte у высших растений размер фотосинтетической [c.93]


Биохимия Том 3 (1980) -- [ c.46 ]




ПОИСК







© 2025 chem21.info Реклама на сайте