Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобина реакции

    Кислород — единственное простое вещество, которое имеет в газовой фазе аллотропную модификацию — озон О3. Молекулярные орбитали и некоторые свойства молекулы О2 приведены в табл. 17.16. За счет двух неспаренных электронов на щ и Лг разрыхляющих орбиталях молекула О2 парамагнитна. Диссоциация этой молекулы становится заметной при —2300 К. Поскольку молекула О2 не насыщенна, для кислорода характерны реакции присоединения, в частности к гемоглобину крови. [c.425]


    Белки-это макромолекулярные соединения, имеющиеся во всех живых клетках. Они служат важнейшим строительным материалом в тканях животных, являются главной составной частью кожи, хрящей, ногтей и мышц. К белкам относятся и ферменты-катализаторы биохимических реакций, протекающих во всех живых организмах. Белки осуществляют перенос жизненно важных веществ в организме. Например, гемоглобин, который переносит О2 от легких к клеткам, представляет собой белок. Антитела, выполняющие в организме защитную функцию (защищают от вредных веществ), тоже состоят из белков. [c.444]

    Основная химическая реакция при дыхании выражается уравнением С+02=С02+94 ккал. Необходимый для дыхания кислород поступает в организм человека через легкие, тонкие и влажные стенки которых обладают большой поверхностью (порядка 90 м ) и пронизаны кровеносными сосудами. Попадая в кровеносные сосуды кислород образует с гемоглобином, заключенным в красных кровяных шариках, непрочное химическое соединение, и в таком виде красной артериальной кровью разносится по тканям тела. В них кислород отщепляется от гемоглобина и окисляет органические вещества пипги. При этом получающийся углекислый газ частично образует непрочное соединение с гемоглобином, а частично просто растворяется, после чего током темной венозной крови вновь поступает в легкие и выводится из организма. Схематически процесс дыхания можно представить следующими реакциями  [c.609]

    Глюкоза играет важную роль в жизнедеятельности человека и животных. В количестве 5—6 г у взрослого человека она содержится в крови и спинномозговой жидкости. Кровь разносит глюкозу по всем клеткам тела, в которых в результате сложнейших последовательно происходящих реакций с различными химическими соединениями она превращается в углекислый газ и воду, используя выделяющуюся при этом энергию. В этом и заключена суть дыхания к клетке подводится гемоглобином вдыхаемый кислород, который окисляет глюкозу в углекислый газ и воду, выбрасываемые затем организмом. [c.148]

    Молекула гемоглобина человека, подобно гемоглобину других млекопитающих, состоит из четырех полипептидных цепей (каждая из которых содержит одну гем-группу) и способна обратимо присоединять четыре молекулы кислорода. Уже много лет назад было показано, что равновесное связывание кислорода гемоглобином описывается S-образной кривой, приведенной на рис. 15.12, которая отличается от аналогичной кривой для миоглобина. Для миоглобина, содержащего одну гем-группу в молекуле, следует ожидать кривую равновесия, отвечающую реакции [c.440]


    Разнообразные геометрические структуры комплексных ионов и молекул непосредственно связаны с геометрией орбиталей и, в свою очередь, определяют пространственные отношения в тех реакциях, в которых комплексы действуют в качестве катализаторов (металлсодержащие ферменты) или переносчиков (например, в составе гемоглобина или цитохромов). [c.217]

    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]

    Белки могут выполнять множество функций. Некоторые из них — ферменты - катализируют реакции, как уже было описано. Другие служат гормонами — специальными веществами, выделяемыми некоторыми органами и разносимыми кровью к другим органам, где они вызывают биохимическую активность (например, ряд гормонов переключает деятельность женского организма на подготовку к беременности). Третьи - транспортные белки — служат переносчиками жизненно важных веществ в организме из одного места в другое. Гемоглобин - одна из таких молекул он разносит кислород от легких к тканям. Белки также служат структурным материалом тела. Волосы, мышцы, кожа, хрящи и ногти построены из белков (см. также табл. ГУ.б в главе о пище). [c.452]

    Мягкие кислоты связывают мягкие основания за счет ковалентных связей, жесткие кислоты связывают жесткие основания за счет ионной связи с образованием устойчивых соединений. Это обстоятельство используется в практических целях. В частности, она объясняет, почему алюминий встречается в природе в виде оксида, гидроксида и силикатов, кальций —в виде карбоната медь, ртуть — в виде сульфидов. Металлы переходных элементов VIH группы периодической системы, как мягкие кислоты, катализируют реакции, в которых принимают участие умеренно мягкие основания (оксид углерода). Другие более мягкие основания (соединения мышьяка и фосфора) служёт каталитическими ядами, так как они образуют более прочные соединения с этими металлами и блокируют их активные центры. Этим же объясняется ядовитость СО для человека. СО образует с Ре (II) гемоглобина крови более устойчивое соединение, чем кислород. Аналогичную роль играют ионы тяжелых металлов (РЬ +, Hg + и др.), которые, взаимодействуя с SH-группами физиологически важных соединений, выключают их функцию. [c.287]

    В предьщущих главах учебника уже отмечалось, что металлические элементы обладают характерным свойством - они теряют электроны в химических реакциях. Разумеется, образующиеся положительно заряженные ионы (катионы) не остаются изолированными, а существуют в окружении анионов, в результате чего сохраняется равновесие зарядов. Кроме того, катионы металлов обладают свойствами льюисовых кислот (см. разд. 15.10). Это означает, что они способны связываться с нейтральными молекулами либо анионами, если таковые обладают неподеленными парами электронов. Мы уже неоднократно упоминали о таких соединениях, в которых катион металла окружен группой анионов или нейтральных молекул. Например, о частице Л (СН)2 мы говорили в разд. 22.6, где обсуждались проблемы металлургии в разд. 10.5, ч. 1, где рассматривалась способность крови к переносу кислорода, упоминался гемоглобин, а в разд. 16.5 при обсуждении равновесий мы встречались с частицами Си(СН)4 и Л (ЫНз)2. Подобные частицы называются комплексными ионами или просто комплексами, а соединения, содержащие такие ионы,-координационными соединениями. [c.370]

    В зависимости от величины концентрации окиси углерода н длительности пребывания человека в такой среде различаются три степени отравления легкое, среднее, тяжелое. При тяжелом отравлении человек теряет сознание, почти не дышит и, если не принять своевременных мер, пострадавший может скончаться. Отравление окисью углерода вызывает нарушение питания кислородом тканей организма в связи с тем, что окись углерода быстро вступает в химическую реакцию с красящими веществами красных кровяных шариков (гемоглобином). А гемоглобин, связанный с окисью углерода, не соединяется с кислородом. [c.118]


    Дж/моль — энергия разрыва связи С]—С1), что соответствует видимой области света. Действительно, разложение СЬ на атомы С1 может происходить под действием видимого света. Уксусный альдегид и ацетон поглощают только в ультрафиолетовой области спектра и поэтому устойчивы к действию видимого света. Заметим, что бесцветны все белки и нуклеиновые кислоты ( если вещество белковой природы окрашено, как, например, гемоглобин, то это обусловлено поглощением света не белком, а связанным с ним низкомолекулярным соединением, в данном случае гемом). Поэтому эти важнейшие биологические полимеры устойчивы к видимому свету, и фотохимические реакции с их участием начинаются [c.368]

    Экзотермическая реакция окисления уг.черода до СО2 протекает в тканях живого организма, куда углерод доставляется в виде органических веществ, извлекаемых из пищи. Необходимый для дыхания кислород поступает в организм человека через легкие, тонкие (0,004 мм) влажные стенки которых с громадной общей поверхностью (порядка 90 м при вдохе и 30 при выдохе) позволяют этому газу проникать в систему обволакивающих легкие кровеносных сосудов. Здесь кислород образует непрочное химическое соединение с заключающимся в красных кровяных щариках сложным органическим веществом — гемоглобином — и в таком виде током красной артериальной крови разносится по тканям тела. В последних кислород отщепляется от гемоглобина и окисляет органические вещества пищи, [c.577]

    Многие ферменты, катализирующие окислительно-восстановительные реакции, содержат атомы железа. Примером могут служить цито-хромы, присутствующие в каждом живом организме. Они содержат гем-группы, связанные с белком иначе, чем в молекулах миоглобина и гемоглобина. Интересным является белок, содержащий негемовое железо (так называемый высокопотенциальный железосодержащий белок), выделенный из клеток нескольких видов пурпурных бактерий. Он может обратимо одноступенчато (путем потери одного электрона) окисляться ионом гексацианоферрат(П1) кислоты [Ре(СК)б] и другими окислителями и, вероятно, катализирует какие-то окислительные процессы, важные для физиологии бактерий. На рисунке, где приведена [c.443]

    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    Эта реакция представляет значительный интерес для биологических процессов. Другими примерами газов, реагирующих при растворении, могут служить H2S, НС1, SO2 и NH3. Поведение кислорода в крови характеризует еще одно отклонение от закона Генри. Обычно кислород лишь незначительно растворим в воде, однако его растворимость резко повышается в присутствии гемоглобина или миоглобина. [c.171]

    Заканчивая главу о кислороде как прототипе элементов серии 8, 8е, Те, Ро, отмечаем большую каталитическую способность молекул О а (зависящую от парамагнетизма двух непарных электронов), а также сравнительно заниженную (например, при сопоставлении с галогенами) реакционную способность тех же наиболее распространенных молекул О а последняя особенность зависит от прочности двукратной связи и от запретов возбуждения состояния до и 2. Если для протекания процесса необходимо разорвать связь между атомами в молекуле О г, реакция затрудняется прочностью этой связи и отсутствием удобных путей для ее возбуждения и расшатывания. Если процесс заключается в присоединении молекулы Оа без разрыва связи, одиночные электроны Ог могут осуществлять перекрывание с одиночными электронами молекулы партнера ИЛИ переходить на его электронные вакансии. Это обстоятельство облегчает роль переносчиков кислорода гемоглобина, гемоцианина, цитохрома и т. п. [c.196]

    Вторая эпоха характеризовалась отсутствием избытка свободного водорода и началом медленного нарастания (в результате радиолиза воды) концентрации свободного кислорода, а также последующего появления в высоких слоях земной газовой оболочки вначале слабого, но все же поглощающего самые короткие ультрафиолетовые волны озонного панцыря последний начал предохранять земную поверхность от стерилизации. Б связи с этим ультрафиолетовая фотохимия постепенно начала вытесняться на земной поверхности фотохимическими реакциями синтеза под действием видимого света с его более длинными волнами. Окрашенные пигменты (хлорофилл, гемоглобин, гемоцианин), имеющие в молекулярном скелете порфириновую группировку из четырех пятичленных пиррольных колец с атомами Mg, Ре, Со и Си, в их центре рождались теперь в воде океана и смогли наравне с другими сложными органическими молекулами сохранять свое существование, тогда как раньше короткий ультрафиолет разложил бы их на осколки так же, как он стерилизовал все живое. [c.375]

    Многие химические реакции протекают при приготовлении пищи. Если бисквит делают с применением кислого молока и питьевой соды, то между молоком и содой происходит химическая реакция, при которой содержащееся в кислом молоке вещество — молочная кислота взаимодействует с содой, в результате чего образуется газ — двуокись углерода, который выделяется в виде мелких пузырьков и поднимает тесто. И, конечно же, огромное число химических реакций протекает в человеческом организме. Пища, которую ест человек, переваривается в желудке и в кишечнике. Кислород, содержащийся во вдыхаемом воздухе, соединяется с веществом — гемоглобином, входящим в состав эритроцитов, а затем освобождается в тканях, где происходит множество разных реакций. Биохимики и физиологи заняты изучением химических реакций, происходящих в человеческом организме. [c.20]

    В случае гемоглобина предполагалось, что некоторые окисли-тельно-восстановительные реакции могут протекать по внутримолекулярному механизму, поскольку четыре реагирующих гем-группы связаны с одной и той же молекулой. Такой механизм, в частности, был разработан Лембергом и Леггом [5] для объяснения самоокисления гемоглобина. Реакция самоокисления привлекала относительно мало внимания, но, поскольку эта реакция имеет большое значение при исследовании стабильности оксигемоглобина, она будет здесь подробно обсуждена. [c.198]

    Джордж и Стрэтмен [37], исследовавшие кинетику окисления миоглобина в метмиоглобин молекулярным кислородом в таких же условиях, какие применялись Бруксом, обнаружили подобные явления. Эта реакция, которая протекает приблизительно в шесть раз быстрее, имеет первый порядок по неокисленному миоглобину, и константа реакции первого порядка подобным же образом изменяется в зависимости от давления кислорода (см. рис. 1, о и б). Максимальная скорость и здесь проявляется при давлении кислорода, требуемом для половинного насыщения, свидетельствуя об участии в реакции как групп РеОз +, так и свободных групп Ре +. Так как миоглобин содержит в каждой молекуле протеина только одну гем-группу, то внутримолекулярный механизм, предложенный Лембергом и Леггом 5], исключается, и, таким образом, для миоглобина механизм должен быть межмолекулярным. Если допустить, что одинаковая кинетика окисления является результатом идентичного механизма реакции (а чем более сложна кинетика, тем более правдоподобным становится это допущение), то весьма вероятно, что и в случае гемоглобина реакция также является межмолекулярной. [c.202]

    Обычно в состав простетических групп в растительных и животных системах входят порфириновые ядра, представляющие собой хелатные структуры с включением ионов металлов (Ре , Со ", и т. д.). Так, гемоглобин животных содержит такую группу с Ре " , присоединенную к белковой половине (глобин). Эта группа аналогична по структуре простетической группе, содержащей в хлорофилле растений и одноклеточных животных. Молекулярный вес белков обычно лежит в пределах от 30 ООО до 80 ООО. Однако молекулярный вес может быть и меньше и значительно больше этих величин. Ферменты являются очень специфичными катализаторами. Зачастую их активность может проявляться только в какой-либо одной реакции. Так, например, фумараза катализирует только обратимую реакцию превращения малеиновой кислоты в фумаровую [98]  [c.561]

    Очень большая константа скорости, наблюдаемая для этой обратимой реакции, находится в соответствии с представлением о том, что скорость реакции лимитируется диффузией. 1[])Н этом каждое столкновение иона фумаровой кислоты с активным участком фермента приводит к реакции. То же самое, ио-видимому, справедливо для реакции соединения N0 с желе.юм гемоглобина и Н2О2 с пероксида. юй дрожжей. [c.561]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    Гемоглобин участвует в целом ряде равновесий, включая протонирование-депрото-нирование и оксигенирование-дезоксигенирова-ние. В целом реакцию можно приближенно описать уравнением [c.108]

    Денатурированные белки обычно менее растворимы, чем нативные формы, их физиологическая активность при денатурации теряется. Вероятно, теряется и способность существовать в кристаллическом состоянии, так как ни один денатурированный белок не был выделен в кристаллической форме. Во многих случаях эти изменения сопровождаются увеличением количества сульфгидрильных групп, как, например, это наблюдается при восстановлении кератина. Молекулярный вес IB большинстве случаев, но не всегда, остается неизменным Так, гемоцианин улитки Helix pomatia) в изоэлектрической точке имеет молекулярный вес 6 740 000, но с из менением. pH распадается на фрагменты, составляющие половину, четверть восьмую части исходной молекулы. Такой же эффект наблюдается и при обработке мочевиной. Например, гемоглобин расщепляется на две равные идентичные части, эдестин — на четыре. Имеются указания на то, что количество кислотных или основных групп уменьшается при денатурации, вероятно, вследствие внутримолекулярных реакций. [c.688]

    Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например оксид азота (II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакщ1и окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением. [c.455]

    Ассоциация биологически важных молекул с образованием комплексов лежит в основе построения надмолекулярных структур клетки и является важным этапом в функционировании белков и нуклеиновых кислот в живых организмах. Например, перенос кислорода из легких в различные органы, потребляющие кислород, происходит с помощью специального белка, содержащегося в красных кровяных тельцах — эритроцитах, так называемого гемоглобина, который способен образовывать комплекс с кислородом. В легких происходит ассоциация кислорода с гемоглобином (НЬ) с образованием комплекса НЬ+ + Оа ч НЬОа. В органах, потребляющих кислород, комплексдиссо- циирует, и выделившийся кислород расходуется на реакции окисления. [c.226]

    Химические свойства. Кислород, как и фтор, образует соединения со всеми элементами, кроме гелия, неона и аргона. Достаточно большая энергия связи между атомами в молекуле О2 проявляется в высоких значениях энергии активации (см. рис. 40) реакций с участием кислорода, что требует предварительного нагревания или введения катализатора для их осуществления. Так, фосфор сгорает в кислороде (с образованием РгРз) прн нагревании до 60°С, сера (в SO2) — до 250, водород (в Н2О) —выше 300 и графит (в СО2) — до 750°С. Но некоторые вещества (многие металлы, N0, гемоглобин крови) взаимодействуют с кислородом и при комнатной температуре. [c.231]

    Белки являются основной составной частью мягкой структурной ткани животных и имеют большое значение в биологии. Белки, называемые ферментами, действуют как катализаторы клеточных реакций известно немало полипептидных гормонов. Метаболическая активность клетки контролируется нуклеопро-теинами белки, растворенные в крови, отвечают за транспорт кислорода (гемоглобин) и иммунный ответ. Белки выполняют также многие другие функции. [c.296]

    Большое значение в химии комплексных соединений элементов триады железа имеют хелатные и внутрикомплексиые соедннения, образующиеся при взаимодействии с полидентатными лигандами . За счет хелатного эфс1)екта устойчивость таких комплексов существенно выше. Характерными примерами внутрикомплексных соединений являются диметилглиоксимат никеля — характерный ярко-красный осадок (реакция Чугаева) — и гемоглобин — внутрикомп-лексное соединение железа [c.411]

    Гемоглобин 220, 258, 312, 648, 551 Генетическая связь между классами неорганических соединений 250 Гептан 450 Гептнл 450 Гербициды 524 Гер.маний 407 Гетероатомы 655 Гетерогенные реакции 138 Гетеролитический разрыв связи 4,39 [c.702]

    Такие реакции происходят в двигателях внутреннего сгорания. Углеводороды, входящие в состав бензина, имеют невысокие температуры кипения и испаряются перед сгоранием в цилиндрах двигателя. Недостаток кислорода может вызвать неполное сгорание, в результате которого образуется ядовитый газ оксид углерода. Он особенно опасен тем, что не имеет запаха и человек не замечает его появления. Оксид углерода соединяется с гемоглобином, красным пигментом iii 111) j.) iiiM крови, образуя очень стабильный комплекс — [c.571]

    Железо играет весьма активную роль в жизнедеятельности любых организмов, связанную, прежде всего, с процессами переноса и обмена. Оно входит в состав ферментов, катализирующих окислительно-восстановительные процессы, комплексов, служащих для передачи электронов, гемоглобина, являющегоея пергеносчйком кислорода. Велика роль железа в обмене нуклеиновых кислот, синтезе белков, в процессах фотосинтеза и дыхания растений, в других биохимических реакциях. [c.499]

    Ре-энзимы (железо-содержащие ферменты). К настоящему моменту установлено, что для всех форм жизни (единственным известным исключением являются микобактерии) необходимо железо, выступающее как катализатор тех или иных биохимических процессов. Взрослый здоровый человек (-70 кг) содержит всего около 4 г этого металла, большая часть которого входит в состав гемоглобина и ферритина, на долю феррум-энзимов его приходится всего около 300 мг. Но этого небольшого количества железа достаточно для выполнения большого количества разнообразных реакций. [c.358]


Смотреть страницы где упоминается термин Гемоглобина реакции: [c.270]    [c.377]    [c.578]    [c.223]    [c.441]    [c.443]    [c.264]    [c.43]    [c.422]   
Быстрые реакции в растворах (1966) -- [ c.57 , c.63 , c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбция скорость при реакции с гемоглобином

Адаптация систем гемоглобинов основные требования и адаптивные реакции

Геля-Фольгарда-Зелинского реакция гемоглобин

Гемоглобин

Кислород скорость при реакции с гемоглобином

Струевые методы реакциям гемоглобина

Углерод при реакции с гемоглобином

Цианат, реакция с гемоглобином



© 2024 chem21.info Реклама на сайте