Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии фотосинтезирующие

    У всех фотосинтезирующих организмов, включая высшие растения, фотосинтез протекает в мембранных структурах. У пурпурных бактерий поглощающие свет пигменты (бактериальные хлорофиллы и каротины) встроены в мембраны, которые представляют собой складки наружной клеточной мембраны. Эти участки имеют характерную структуру и называются хроматофорами. Они состоят из соединяющихся между собой полых пузырьков, параллельно расположенных трубочек или параллельных пластинок (ламелл) диаметр всей структуры — 50—100 нм. У зеленых бактерий пигменты выстилают внутриклеточные пузырьки. В настоящее время фотосинтезирующие бактерии обитают только в серных источниках и глубоких озерах, но когда-то они были, вероятно, распространены гораздо более широко и являлись единственными фотосинтезирующими организмами на Земле. [c.25]


    Таким образом, суммарный результат фотосинтеза состоит в связывании диоксида углерода, окислении воды до молекулярного кислорода и синтеза углеводов. Образование кислорода как побочного продукта фотосинтеза не является универсальным свойством фотосинтезирующих организмов. Например, у некоторых бактерий фотосинтеза процесс выражается схемой [c.162]

    Фотосинтез — вероятно, наиболее важный из большого числа интересных фотохимических процессов, известных в биологии. От него зависела эволюция атмосферы Земли животные, поедая растения, также черпают энергию Солнца, запасенную фотосинтезом. Согласно оценке, общая масса органического вещества, созданного зелеными растениями в течение биологической истории Земли, составляет 1 % массы планеты. Каждый год в процессе фотосинтеза запасается энергия, эквивалентная десятикратному годовому ее потреблению человечеством. В этом разделе мы обсудим фотосинтез зеленых растений, хотя существуют также другие фотосинтезирующие организмы (например, некоторые бактерии), у которых процессы фотосинтеза могут несколько отличаться. [c.228]

    У зеленых растений трансформация энергии происходит на мембранах тилакоидов хлоропластов, а у фотосинтезирующих бактерий— на мембранах хроматофоров. Увеличение ионной проводимости мембран приводит к рассеиванию энергии в виде теплоты, а разрушение мембран — к полной потере способности к аккумуляции энергии. [c.160]

    Биосинтез начинается с фотосинтеза [1]. Вся жизнь на Земле зависит от способности некоторых организмов (зеленых растений, водорослей и фотосинтезирующих бактерий), содержащих характерные фотосинтезирующие пигменты, использовать энергию солнечной радиации для синтеза органических молекул из неорганических веществ — диоксида углерода, азота и серы. Продукты фотосинтеза служат затем не только исходными веществами, но и источником химической энергии для всех последующих биосинтетических реакций. Обычно принято описывать фотосинтез только как процесс образования углеводов в некоторых случаях основными продуктами фотосинтеза, действительно, являются исключительно крахмал, целлюлоза и сахароза, однако в других организмах на синтез углеводов идет, быть может, всего лишь третья часть углерода, связываемого и восстанавливаемого в процессе фотосинтеза. При ближайшем рассмотрении оказывается, что нельзя провести четкую границу между образованием продуктов фотосинтеза и другими биосинтетическими реакциями в клетке, в которых могут участвовать промежуточные вещества фотосинтетического цикла восстановления углерода. [c.396]


    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    В это.м уравнении НгА может обозначать Нг5 (как в пурпурных серных бактериях), элементарный водород Нг, изопропанол и т. д. Рассмотрев множество реакций такого рода, Ван-Ниль пришел к логическому заключению, что у сине-зеленых водорослей, выделяющих О2, и у эукариотических растений в роли окисляемого субстрата, представленного в уравнении (13-25), выступает вода. Ее расщепление приводит к образованию О2 и поставляет атомы водорода, необходимые для процесса восстановления. Интересно, что такое фотохимическое расщепление является единственной известной реакцией биологического окисления Н2О. Ни один из окислителей, имеющихся в живых организмах, не является достаточно мощным, чтобы отщепить атомы водорода от молекулы воды этой способностью наделены лишь фотохимические реакционные центры фотосинтезирующих организмов. [c.37]

Рис. 68. Сходство и различия в организации митохондрий, дышащих бактерий, фотосинтезирующих бактерий и тилакоида хлоропласта Рис. 68. Сходство и различия в организации митохондрий, дышащих бактерий, фотосинтезирующих бактерий и <a href="/info/278299">тилакоида</a> хлоропласта
    Почему эффект усиления Эмерсона (разд. Д, 1) не наблюдается у фотосинтезирующих бактерий  [c.76]

    В зависимости от того, в какой хим. форме живые организмы способны усваивать из внеш. среды углерод, они делятся на две большие группы-автотрофы и гетеро-трофы. Для первых осн. источником углерода служит СО2, для вторых-разл. орг. соединения. Автотрофное питание осуществляют зеленые растения и фотосинтезирующие бактерии, гетеротрофное-животные и грибы. У микроорганизмов встречаются тот и др. тшш питания. О.в. автотрофных организмов является по преимуществу анаболическим, гетеротрофных-катаболическим. Основу пластического обмена составляет органический обмен. Традиционное разделение его на углеводный обмен, липидный обмен и обмен азотсодержащих соединений обусловлено большой распространенностью в живой природе соед. этих классов и различием их свойств. [c.310]

    Глубокий красный цвет (1 =573-482 нм). Главный каротиноид пурпурных и красных фотосинтезирующих бактерий. [c.191]

    Учитывая данные о Ф. высших растений, водорослей и фотосинтезирующих бактерий, обобщенное ур-ние Ф. можно записать в ввде  [c.176]

    Фотосинтезирующие (фототрофные) бактерии [c.24]

    На следующей стадии эволюции появились, видимо, организмы, родственные современным фотосинтезирующим бактериям (пурпурным и зеленым) они могли использовать энергию солнечного света. Любопытно, что большинство этих (грамотрицательных) фотосинтезирующих бактерий—строгие анаэробы. В отличие от высших растений ни один из указанных микроорганизмов не выделяет кислорода. Напротив, для. восстановления двуокиси углерода в процессе фотосинтеза им необхо ДИМ водород, который они получают либо путем расщепления неорганических соединений типа H2S, тиосульфата или Нг, либо из органичен ских веществ. [c.25]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Фотосинтезирующие бактерии содержат бактериохлорофиллы, у которых восстановлено кольцо II (рис. 13-19). Полоса поглощения этих соединений сдвинута относительно полосы поглощения хлорофилла а в красную сторону до - 770 нм. Основной хлорофилл зеленых серных бактерий СМогоЫит — хлоробиум-хлорофилл — имеет оксиэтильную и фарнезильную боковые цепи. К числу производных хлорофилла относятся феофитины, образующиеся в результате удаления Mg + при обработке хлорофилла слабой кислотой. В результате гидролиза сложноэфирной метильной группы образуются хлорофиллы, а при одновременном удалении метильной и фитильной групп — хлорофиллины. [c.41]

    В хемосинтезирующих бактериях обнаружены н-алканы С12-С31 с примерно одинаковым числом четных и нечетных атомов углерода в фотосинтезирующих бактериях — н-алканы С14-С29. В сине-зеленых водорослях присутствуют н-алканы С15-С20, причем более 80 % в них приходится на углеводороды и более высокомолекулярные коэффициент нечетности — в пределах 1-5. [c.32]


    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    К 1880 г. относятся классические работы Виноградского, открывшего осуществляемые в природе темновые варианты хемосинтетической ассимиляции СО 2, сохранившиеся до сих пор на земле в жизненном цикле многих бактерий (пурпурных и зеленых серобактерий) потомков тех первичных безъядерных еще и бесхлорофилльных организмов, которые возникли в декембрийские времена. Эти бактерии анаэробны, так как возникли в эпоху, когда газовая оболочка земли еще не содержала свободного кислорода, и использовали при ассимиляции СО 2 не воду и фотопроцесс, а темповую реакцию со свободным водородом или водородом, отнимаемым от молекул НаЗ в результате в отличие от фотосинтезирующих организмов эти бактерии выделяют не свободный кислород, а серу, скопляющуюся в мощных природных отложениях. [c.340]

    Наряду с использованием СОг, пурпурные и зеленые бактерии, а также нек-рые др. фотосинтезирующие организмы ассимилируют при Ф. орг. соед. (напр., уксусную и пирониноградпую к-ты). Мн. фотосинтезирующие бактерии способны также к фотоассимиляции N2. [c.633]

    Фотохимическое восстановление СОг в органические соединения слу-, жит основным источником энергии для биосферы, несмотря на то что к числу организмов, в которых идет этот процесс, относится лишь несколько родов фотосинтезирующих бактерий (табл. 1-1) (включая сине-зеленые водоросли), а также эукариотические водоросли и высшие зеленые растения. Теперь уже повсеместно признано, что в ходе фо-топроцессов в этих организмах генерируются NADPH (или восстановленный ферредоксин) плюс АТР (гл. И, разд. Г, 2) [77—79]. Однако эта точка зрения далеко не всегда представлялась очевидной. Рассмотрим суммарную реакцию образования глюкозы в ходе фотосинтеза у высших растений  [c.36]

    Различие между фотосинтезирующими бактериями и зелеными растениями стало еще более очевидным после экспериментов Р. Эмерсона и его сотрудников [79Ь], выполненных в 1956 г. Было известно, что свет с длиной волны 650 нм намного более эффективен, чем свет с длиной волны 680 нм. Однако Эмерсон и др. показали, что сочетание света этих двух длин волн дает более высокую скорость фотосинтеза, чем свет с каждой из указанных длин волн по отдельности. Это позволило предположить, что существуют две разные фотосистемы. Фотосистема, известная теперь как фотосистема I, активируется далеким красным светом (- 700 нм), тогда как фотосистема II — красным светом с более высокой энергией (- 650 нм). Это положение подтверждается множеством разных фактов. Еще в 1937 г. Хилл [79с] показал, что фотосинтетическое образование О2 может идти с использованием мягких окислителей, таких, как феррицианид и бензохинон, а Г. Гаф-фрон [79(1] обнаружил, что некоторые зеленые водоросли способны вести фотоокисление Нг до протонов [уравнение (13-25)], используя электроны для восстановления МАОР. Таким образом, фотосистема I может быть отделена от фотосистемы П. [c.37]

    Чем различаются процессы фотосинтеза у растений (рис. 13-18) и бактерий Ответ очевиден бактерии имеют только фотосистему I, а фотосистема II, в результате функционирования которой высвобождается 2, у них отсутствует. Экспериментально показано, что образование фотосинтезирующими бактериями восстанавливающих эквивалентов (восстановленного ферредоксина или NADPH) требует примерно вдвое меньшего числа квантов света, чем это необходимо зеленым растениям, в которых должна расщепляться НгО. [c.39]

    Бактериохлорофилл, содержащийся в клетках hromatium, тоже имеет три полосы поглощения с Лтах = 800, 850 и 890 нм. Последняя полоса соответствует бактериохлорофиллу реакционного центра — единственной из форм, которая флуоресцирует. Водорастворимый бактерио-хлорофиллсодержащий белок, выделенный из зеленых фотосинтезирующих бактерий hlorobium, удалось получить в кристаллическом виде. Расщифровка трехмерной структуры этого белка с помощью рентгеновской кристаллографии [83] показала, что каждая из субъединиц (с мол, весом 50 ООО) тримерной (МОлекулы содержит семь встроенных молекул бактериохлорофилла, как это показано на рис. 13-20, . В зе- [c.42]

    Фотохимическое образование бактериями Нг является только одним из примеров разнообразных процессов фотометаболизма в фотосинтезирующих организмах [132а]. Другим примером такого рода служит происходящее под действием света поглощение ацетата пурпурными бактериями с превращением его в поли-р-оксибугират. [c.61]

    Г. встречаются в микроорганизмах, высших растениях и нервных тканях млекопитающих. Зеленые растения содержат гл. обр. 3-0-(р-0-галактопиранозил)диацил-5п-глице-рины и 3-0-[6-0-(а-0-галактопиранозил)-р-0-галактопира-нозил]диацил-5п-глицерины (соотв. ф-ла I и II), на долю к-рых приходится до 40% суммарных липидов ламелл хлоропластов (в ламеллах находится до 80% Г. растит, клетки) В незначит. кол-ве I присутствует в спинном мозге млекопитающих. В ламеллах высших растений и в фотосинтезирующих микроорганизмах содержится 3-0-(6-суль-фо-6-дезокси-а-Е)-глюкопиранозил)-1,2-диацил-5п-глицерин (III). Грамположит. бактерии содержат Г. определенного [c.577]

    Фотосинтезирующие бактерии способны использовать не только ввдимое, но и ближнее ИК излучение (до 1000 нм) в соответствии со спектрами поглощения преобладающих в них пигментов - бактериохлорофиллов. Бактериальный Ф. не имеет существенного значения в глобальном запасании солнечной энергаи, но важен для понимания общих механизмов Ф. Кроме того, локально бескислородный Ф. может вносить существенный вклад в суммарную продуктивность планкгона. Так, в Черном море кол-во хлорофилла и бактериохлорофил-ла в столбе воды в ряде мест приблизительно одинаково. [c.176]

    Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетич. аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (т. наз. тилакои-дах), тогда как темповая стадия происходит в жвдком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях - в т. наз. хроматофорах. [c.176]

    Элжгронтранспортные цепи фотосинтезирующих бактерий в основных своих чертах аналогичны отдельным фрагментам таковых в хлоропластах высших растений. На рис. 3 показана электронтранспортная цепь пурпурных бактерий. [c.178]

    Темяовая стадия Ф. Все фотосикгсзирующие организмы, выделяющие О2, а также нек-рые фотосинтезирующие бактерии сначала восстанавливают СО до фосфатов сахаров в т. наз. цикле Калвина. У фотоситезирующих бактерий встречаются, по-видимому, и др. механизмы. Большинство ферментов цикла Калвина находится в растворимом состоянии в строме хлоропластов. [c.178]

    Из высших растений, водорослей и фотосинтезирующих бактерий вьщелено и структурно охарактеризовано св. 50 разл. X. Осн. пигменты высших растений и зеленых водорослей - X. а ч Ь. Основа этих X.- ди-гидропорфириновый (хлориновый) цикл, содержащий в качестве эфирных фупп (У) остаток спирта фи-тола (СНз)2СН(СН2)зСН(СНз)(СН2)зСН(СНз)(СН2)зС(СНз) = = СНСНзОН. [c.291]

    В большинстве фотосинтезирующих бактерий обнаружены бактериохлорофиллы (БХ), отличающиеся от X. а типом макроцикла и замещающими фуппами в цикле. Они имеют несколько модификаций так, из пурпурных бактерий вьщелены БХ а и Ь, из зеленых бактерий - БХ а, с, и е, из серных бактм)ий - БХ с, й и е обнадтаены также фотосинтезирующие бактерии, содержащие БХ [c.291]

    Особенно большую опасность представляет цветение , вызьшаемое сипе-зелепыми и другими токсичными видами водорослей. Сине-зеленые водоросли играют особую роль в экосистемах современньк водоемов. Они занимают промежуточное положение между бактериями и растениями, так что их часто назьшают цианобактериями. Сине-зеленые водоросли появились па Земле более 3 млрд. лет назад, были первыми фотосинтезирующими организмами, образовавшими аэробную систему Земли. Сине-зеленые водоросли обладают колоссальным потенциалом размножения за 70 дней вегетационного периода одна клетка может дать 10 ° потомков. К благоприятным условиям для размножения сине-зеленьк водорослей относятся низкое содержание кислорода, т.е. более восстановительная среда. Сине-зеленые водоросли - единственные обитатели Земли, которые способны усваивать четыре вида газов СО, (фотосинтез, как у зеленых растений). О, (дькание), М, (азотфиксация), (как бактерии в процессах хемосинтеза). [c.40]

    Продуцентами витамина В,2 при его промышленном получении служат актиномицеты, метанообразующие и фотосинтезирующие бактерии, одноклеточные водоросли. В 70-х годах XX в. интерес ученых привлекли пропионовокислые бактерии, известные еще с 1906 г. и широко использующиеся для приготовления препаратов животноводства. Вьщелено 14 видов пропионовокислых бактерий, продуцирующих витамин В,2 их физиолого-биохими-ческая характеристика дана Л. И. Воробьевой. Для получения высокоочищенных препаратов витамина 6,2 пропионовокислые бактерии культивируют периодическим способом на средах, содержащих глюкозу, казеиновый гидролизат, витамины, неорганические соли, хлорид кобальта. Добавление в среду предшественника 5,6-диметилбензимидазола (способствует переводу неактив-. ных форм в природный продукт) по окончании первой ростовой фазы (5 — 6 суток) стимулирует быстрый (18 —24 ч) синтез витамина с выходом последнего 5,6 —8,7 мг/л. Путем селекции, оптимизации состава среды и условий культивирования выход витамина В)2 в промышленных условиях был значительно повышен. Так, выход витамина на среде с кукурузным экстрактом и глюкозой при поддержании стабильного значения pH близ нейтральных зон достигает 21 — 23 мг/л. Мутант пропионовокислых бактерий продуцирует до 30 мг/л витамина. Бактерии плохо переносят перемешивание. Применение уплотняющих агентов (агар, крахмал), предотвращающих оседание бактерий, а также использование высокоанаэробных условий и автоматического поддержания pH позволяет получить наиболее высокий выход витамина — 58 мг/л. [c.55]

    Сходный фермент, который, по-видимому, участвует в синтезе а-кетоглутарата из сукцинил-СоА и СО2 (а-кетоглутарат — синтетаза), очищен из фотосинтезирующих бактерий [140а]. [c.273]


Смотреть страницы где упоминается термин Бактерии фотосинтезирующие: [c.194]    [c.477]    [c.278]    [c.78]    [c.366]    [c.293]    [c.374]    [c.472]    [c.653]   
Биохимия Том 3 (1980) -- [ c.25 , c.26 , c.472 ]

Молекулярная биология клетки Том5 (1987) -- [ c.50 , c.51 ]

Теория и практические приложения метода ЭПР (1975) -- [ c.415 ]

Фотосинтез (1972) -- [ c.12 , c.20 ]

Жизнь зеленого растения (1983) -- [ c.120 ]

Транспорт электронов в биологических системах (1984) -- [ c.21 , c.22 ]

Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.86 ]




ПОИСК







© 2025 chem21.info Реклама на сайте