Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтезирующие растения

    Фотосинтезирующие растения поглощают солнечную энергию и синтезируют углеводы и другие органические компоненты клетки из двуокиси углерода и воды. При этом они выделяют в атмосферу кислород. Общее уравнение реакции фотосинтеза растений имеет следующий вид  [c.22]

    Все фотосинтезирующие растения поглощают свет и превращают его в химическую энергию с помощью молекулы хлорофилла. Освобождаемая энергия используется затем для [c.133]


    Пигментная система фотосинтезирующих растений — сложная смесь, анализ которой представляет немало трудностей. Экстрагирование разрушает химические единицы, содержащие пигменты пластид в естественном состоянии, разбавляет их пигментами вакуолей и клеточных стенок, не имеющими отношения к фотосинтезу, и приводит их в соприкосновение с клеточными компонентами последние могут оказывать химическое действие на пигменты (например кислоты и энзимы). Разделение экстрагированной смеси на ее компоненты легко может повести к дальнейшей деструкции при соприкосновении с воздухом, растворителем или адсорбентом. Полное разделение затрудняется еще и тем, что смесь пигментов содержит изомеры или другие компоненты, мало отличающиеся друг от друга по растворимости и химическим свойствам. [c.401]

    КЛАССИФИКАЦИЯ И НЕКОТОРЫЕ ОСОБЕННОСТИ ФОТОСИНТЕЗИРУЮЩИХ РАСТЕНИИ [c.23]

    Суммарное уравнение реакций, происходящих с затратой энергии фотонов пИ во всех фотосинтезирующих растениях, представлено ниже. [c.213]

    ПИГМЕНТЫ ФОТОСИНТЕЗИРУЮЩИХ РАСТЕНИИ [c.108]

    Макрофиты — водные фотосинтезирующие растения, плавающие на поверхности воды или погруженные в ее толщу. Плавающие растения не имеют корней и держатся на поверхности воды. К наиболее распространенным плавающим растениям относится ряска, маленькое растение с тремя листьями, имеющее диаметр 5 мм. Другое распространенное растение данного типа — водяной гиацинт. Все или большинство лиственных погруженных в толщу воды растений растут под поверхностью воды. Они могут в зависимости от чистоты воды иметь корни на глубине более 3 м. Погруженные растения закрепляются корнями в донном иле, а их лиственная часть располагается над поверхностью воды. Озера с каменистым и гравийным дном и небольшим количеством питательных веществ в воде не являются благоприятными для роста водных растений, тогда как в эвтрофицированных озерах, в мелких заводях и вдоль береговых линий они растут в изобилии. Слив сточных вод в озера и водоемы может стимулировать рост растений при других благоприятных условиях, таких, как достаточно высокая температура и наличие солнечного света. В биологических прудах сдерживают рост водных растений, устраивая достаточно крутые боковые стенки и сохраняя глубину воды не менее 1 м, чтобы предотвратить проникание солнечных лучей на дно. [c.55]

    Важнейшие представители пигментов фотосинтезирующих растений [c.109]

    Во всех фотосинтезирующих растениях обнаружен хлорофилл а, содержание которого превьщ1ает содержание других пигментов. Он является самым важным пигментом, так как образует реакционные центры, участвующие в световой фазе фотосинтеза. Другие формы хлорофиллов, а также каротиноиды рассматриваются как вспомогательные, или сопутствующие, пигменты. Функция каротиноидов не ограничивается ролью светособирающих пигментов. Оки также защищают ткани от окисления кислородом на свету. [c.531]


    Указанный на рис. 2 путь превращения СО2 является основным для всех фотосинтезирующих растений. Соотношение скоростей образования углеводов, белков и жиров зависит от разнообразных [c.274]

    ХЛОРОФИЛЛЫ = пигменты фотосинтезирующих растений, являющиеся сенсибилизаторами фотосинтеза (см. Красящие вещества природные, Пигменты биологические, Сенсибилизирующие красители, Фотосинтез). Энергия света, поглощенного X., превращается ими в химич. энергию окислительно-восстановительных реакций, к-рые приводят в движение сложный механизм фотосинтеза растений. Исключительная роль X. в фотосинтезе, являющемся одним пз наиболее важных ироцессов, происходящих на Земле, объясняет интерес, проявляе.мый к изучению X. [c.360]

    Опыты с использованием изотопов кислорода показали, что весь О2, выделяемый растениями при фотосинтезе, происходит непосредственно из воды [371. Когда фотосинтезирующим растениям давали воду или СОа, в которых некото- [c.536]

    Эти проблемы не удавалось разрешить до тех пор, пока не появились современные биохимические методы исследования. Одним из наиболее ценных методов является использование радиоактивного углерода в качестве метки, позволяющей проследить судьбу включенной двуокиси углерода в ходе фотосинтеза в зеленых растениях. Фотосинтезирующие растения неспособны делать различие между обычной двуокисью углерода С Оз и радиоактивной С Юг и могут включать С Оз в промежуточные продукты цикла восстановления углерода. [c.538]

    I%I К,френч, 1962). У многих фотосинтезирующих растений установлено наличие пигмента с максимумом поглощения при 700-705 нм ( Кок 956, 1961 Кок, 1962). [c.88]

    Определенные формы живых организмов могут использовать эту энергию непосредственно для преобразования одних молекул в другие, более богатые энергией, с использованием углекислого газа как единственного источника углерода. Такими формами являются все фотосинтезирующие растения, которые в процессе фотосинтеза осуществляют образование углеводов и свободного кислорода из двуокиси углерода и воды. Это так называемые автотрофы. [c.111]

    Наряду с хлорофиллами в комплекс пигментов фотосинтезирующих растений входят каротиноиды и фикобилины. [c.115]

    Факторы, влияющие на рост микроорганизмов. Наиболее важными факторами, влияющими на биологический рост, являются температура, наличие питательных веществ, поступление кислорода, значение pH, присутствие токсинов и (в случае фотосинтезирующих растений) наличие солнечного света. Бактерии классифицируются в соответствии с оптимальным для их роста температурным диапазоном. Мезофильные бактерии растут при тем1пературе от 10 до 40°С, для них оптимальная температура 37° С. Аэротенки и биофильтры работают при температуре сточных вод от 20 до 25°С в районах с теплым климатом и от 8 до 10° С зимой в северных районах. Если источником водоснабжения служит холодная колодезная вода, температура сточных вод может быть летом ниже 20°С, а зимой в очень холодную погоду на поверхности вторичных отстойников иногда образуется лед (могут также замерзнуть стабилизационные пруды). Анаэробные метантенки обычно нагревают почти до оптимальной температуры 35° С. [c.85]

    ХЛОРОФИЛЛЫ м мн. Органические производные порфи-риновых комплексов магния являются пигментами фотосинтезирующих растений, водорослей и бактерий поглощают энергию солнечного света и трансформируют её в ходе синтеза органических соединений в энергию химических связей. [c.483]

    Из органических соединений строится большая часть веществ живых организмов. Этим объясняется название, данное органической химии, ибо раньше думали, что только живые организмы могут синтезировать органические вещества. Несмотря на то что большая часть встречающихся в природе органических веществ фотосинтезируется растениями или микроорга- [c.15]

    Теперь мы обратимся к процессу, который служит в конечном счете источником почти всей биологической энергии, т.е. к процессу улавливания солнечной энергии фотосинтезирующими организмами и превращению ее в энергию биомассы. Фотосинтезирующие и гетеротрофные организмы сосуществуют в биосфере в сбалансированном стационарном состоянии (рис. 23-1). Фотосинтезирующие растения улавливают солнечную энергию и запасают ее в форме АТР и NADPH, которые служат им источником энергии для синтеза углеводов и других органических компонентов клетки из двуокиси углерода и воды при этом они вьщеляют в атмосферу кислород. Аэробные гетеротрофы используют этот кислород ДЛЯ расщепления богатых энергией органических продуктов фотосинтеза до СО2 и Н2О, чтобы генерировать таким путем АТР для своих собственных нужд. Двуокись углерода, образующаяся при дыхании гетеротрофов, возвращается в атмосферу и вновь используется фотосинтезирующими организмами. Солнечная энергия, таким образом, создает движущую силу для круговорота, в процессе которого атмосферная двуокись углерода и атмосферный кислород непрерывно циркулируют, проходя через биосферу (рис. 23-1). [c.683]


    Из 14 реакций фотосинтетического цикла только две реакции специфичны для фотосинтезирующих растений. Первая специфичная реакция (2)—расщепление рибулезо-1,5-дифосфата с присоединением СОг и НгО и образованием 3-фосфоглицериновой кислоты. Вторая специфичная реакция (14) —фосфорилирование рибулезо-5-фосфата с образованием рибулезо-1,5-дифосфата. Остальные 12 реакций идут и в тех клетках растений,, где фотосинтеза нет. Эти реакции происходят при дыхании, синтезе и превращениях углеводов. [c.134]

    Доказательством этого пути фиксации углекислоты в процессе фотосинтеза является, с одной стороны, наличие в фотосинтезирующих растениях всех ферментов, катализирующих реакции этого цикла, а с другой — возможность образования сахаров в искусственной среде, с ферментным препаратом, полученным из листьев, к которому добавлены некоторые кофакторы и каталитические активные вещества. При инкубации этих препаратов в присутствии СОг, АТФ, НАДФ Нг и каталитического количества рибулезодифосфата в среде накапливается сахар. [c.134]

    Фосфоглицериновая кислота превращается в фосфоенолпировиноградную кислоту, которая присоединяет углекислоту и воду, в результате чего образуется щавелевоуксусная кислота, а за-тем и другие соединения. Реакция карбоксилирования трехуглеродного соединения по схеме СзЧ-СОг- - С4 встречается не только у фотосинтезирующих растений, но и в тех клетках растений, где фотосинтеза нет, а также в клетках других организмов. В этой реакции карбоксилирования синтез сахаров не происходит, а образуются органические кислоты и аминокислоты. При фотосинтезе основная часть СОг (по крайней мере 70—85% поглощенного углерода) включается через фото-синтетический цикл путем присоединения к рибулезо-1,5-дифос- [c.134]

    Мы не можем решительно утверждать, что фотосинтез идет совершенно одинаковым путем и ведет к одним и тем же первичным продуктам у всех организмов, начиная с низших диатомовых водорослей и кончая высокоорганизованными цветковыми растениями. Разница в строении и составе фотосинтезирующих органов (см. главы XIV и XV) у различных видов делает правдоподобным небольшие отклонения. Однако общее распространение хлорофилла во всех фотосинтезирующих растениях и сходство кинетических отношений, управляющих фотосинтезом у одноклеточных водорослей (например, hlorella) н у высших наземных растений (например, пшеница), показывают, что общий характер процесса одинаков во всем растительном мире. По завершении фотосинтеза растения и животные начинают аминировать, галогенировать, полимеризовать, окислять, восстанавливать или дисмутировать продукты фотосинтеза. [c.18]

    Продукты кратковременного фотосинтеза. Длительность нахождения активно фотосинтезирующего растения в атмосфере, содержащей меченую Og, уменьшалась до тех пор, пока весь меченый углерод в растении не оказывался в немногих соединениях 13, 5, 6]. Этими соединениями оказались фосфоглицериновая, фосфопировино-градная, яблочная и иногда глицериновая кислоты. Так, например, при фотосинтезе зеленой водоросли Seenedesmus в течение 5 сек. при освещенности в 107 600 люкс оказалось, что 87% активности находилось в фосфоглицериновой, 10% — в фосфопировиноградной и 3% — в яблочной кислотах. Радиоактивные продукты фотосинтеза у S ened smtis, продолжавшегося 5 и 90 сек. в показаны на [c.585]

    Все более или менее детальные интерпретации изменений флуоресценции в фотосинтезирующих растениях, высказанные исследователями до настоящего времени, основаны на этих общих идеях, но расходятся в том, какому из специфических механизмов тушения приписывается главная роль. Некоторые исследователи (например, Каутский, Вассинк и Катц) приписывают главную роль химическому тушению веществами, участвующими в фотосинтезе. Поэтому они рассматривают всякое усиление флуоресценции как доказательство уменьшения эффективности сенсибилизированного фотохимического процесса (с соответствующим уменьшением химического тушения) и всякое ослабление флуоресценции как доказательство усиления эффективности использования энергии возбуждения для сенсибилизированных фотохимических реакций (с соответствующим усилением химического тушения). Другие исследователи (Франк) усматривают главную причину изменений интенсивности флуоресценции в образовании комплексов хлорофилла с поверхностно активными веществами (наркотиками), которые замедляют рассеяние энергии и в то же самое время угнетают фотохимическую сенсибилизацию, прегтятствуя соприкосновению светочувствительного субстрата с хлорофиллом. Здесь предполагается, таким образом, ослабление обоих конкурирующих с флуоресценцией процессов сенсибилизации и рассеяния, тогда как теории первого типа признают подавление только одного конкурирующего процесса (сенсибилизации), принимая, что два других процесса (рассеяние и флуоресценция) одинаково выигрывают от устранения их общего конкурента. [c.232]

    Химические и биохимические методы трудно приспособить для непрерывного наблюдения за скоростью фотосинтеза, поэтому физикохимические методы давно привлекали внимание исследователей в этом отношении. В современных количественных исследованиях процессов метаболизма манометрические измерения приобрели преобладающее значение. Биохимики нашли, что почти каждая биохимическая реакция может проводиться таким образом, чтобы происходило поглощение или выделение газа, и это часто дает наилучший способ для измерения ее скорости. Реакции гемоглобина с кислородом и окисью углерода были первыми, для которых этот метод был разработан Холдейном и Баркрофтом затем он был применен для изучения дыхания и фотосинтеза. Со времен Сакса [3] получил известность и широкое распространение приближенный метод измерения объема выделенного кислорода путем подсчета пузырьков . В спокойном растворе с определенным поверхностным натяжением пузырьки газа, отделяющиеся от листьев, имеют приблизительно одинаковую величину, так что скорость образования газа может быть вычислена путем умножения числа пузырьков, образующихся в единицу времени, на объем одиночного пузырька. Этот метод прост и чувствителен, но явно чреват ошибками, вызываемыми различием в смачиваемости листовой поверхности, слиянием мелких пузырьков в крупные, влиянием конвекционных токов или размешивания на размер пузырьков и подобными осложнениями. Многие авторы [15, 21, 29, 35, 45] старались усовершенствовать этот метод и сделать подсчет пузырьков автоматическим. Обсуждение этих попыток можно найти в книге Спёра [40]. Важное возражение против этого метода было выдвинуто Гесснером [63] пузырьки постоянного размера могут образовываться только в спокойной воде, в которой фотосинтезирующее растение окружается вскоре слоем воды со щелочной реакцией, с малым содержанием углекислоты и пересыщенной кислородом, а каждый из этих трех факторов может сильно влиять на скорость фотосинтеза. [c.255]

    Для того чтобы мог происходить фотосинтез, в хлоропласты должна поступать двуокись углерода. Небольшое количество СО2 образуется в результате дыхания в митохондриях, нахо-ДЯШ.ИХСЯ по соседству с хлоропластами (сами хлоропласты, по-видимому, не дышат), но, разумеется, количество углерода в растении от этого не увеличивается. Главным поставщиком углерода служит внешняя среда, т. е. либо вода, в которую погружены листья водных растений и в которой растворен углекислый газ, либо воздух, окружающий листья наземных растений. Фотосинтезирующие растения поглощают СО2 из окружающей среды, вследствие чего концентрация СО2 вблизи растения снижается, т. е. возникает градиент концентрации. Благодаря этому градиенту происходит диффузия (обусловленная беспорядочным тепловым движением молекул) из области с более высокой концентрацией СО2 в область с более низкой концентрацией. В полностью неподвижной воде или в неподвижном воздухе этот градиент теоретически должен был бы простираться до бесконечности, т. е. стационарное состояние не могло бы установиться. На самом же деле в достаточно большом, но конечном объеме, содержащем СО2 и растение, стационарное состояние устанавливается довольно быстро. Кроме того, в присутствии транспирнрующего растения воздух не может быть полностью неподвижным (стр. 62), и даже в воде, по-видимому. всегда существуют хотя бы небольшие конвекционные токи, обусловленные местными разностями температуры. Однако, несмотря на эти неизбежные слабые движения в практически неподвижном воздухе или в воде, СО2 поступает в растение гораздо медленнее, чем в активно перемешиваемой среде. Следовательно, молекулы среды (воздуха или воды) препятствуют движению молекул СО2 иными словами, диффузионный ток, направленный к растению, встречает на своем пути определенное сопротивление. [c.52]

    Величину запасенной энергии можно определить не разрушая растение (благодаря чему удаехся избежать ошибок, присущих выборочному методу), если измерить количество поглощенной световой энергии и вычесть из него количество выделившегося тепла. Однако этот метод сопряжен со значительными техническими трудностями. Он основан на определении разности теплот, выделяемых в калориметре при освещении растительного материала, например суспензии hlorella, и какого-либо инертного поглотителя, например раствора туши [209]. (Для освещения объекта крышка калориметра делается прозрачной.) Количество тепла, выделенного растительным материалом в темноте, служит прямой мерой количества энергии, потерянной при дыхании. Эту величину можно использовать для введения поправки при определении результирующей скорости запасания энергии на свету [294]. Другой метод основан на измерении количества тепла, выделяемого нормально фотосинтезирующим растением и растением, в котором фотосинтез подавлен ультрафиолетовыми лучами (предполагается, что эти лучи не действуют на дыхание) [2]. [c.107]

    Плаунообразные (исор81(1а) представлены небольшим количеством мелких (не выше 30 см) фотосинтезирующих растений, состоящих из ползучего стебля с корнями и вертикальных стеблей с тонкими, расположенными по спирали листьями (фиг. 8). Древовидные растения этого подтипа были широко распространены в девонском и каменноугольном периоде. [c.31]

    Сахароза (а-В-глюкониранозил-Р-В-фрукто-фуранозид) (I) — дисахарид, чаще всего встречающийся в природе. Она присутствует во всех фотосинтезирующих растениях. [c.129]

    Гербициды — производные симм-триазина (симазин, атразин, пропазин, прометрин) и N-apнл-N , N -диме-тилмочевины (монурон, диурон, линурон) — воздействуют на процессы фотосинтеза растений. Вследствие этого токсическое действие их проявляется при выращивании растений на свету и усиливается при повышении температуры. При биологическом методе определения этих препаратов учитывают степень угнетения гербицидами процесса накопления сухого вещества фотосинтезирующими растениями. [c.188]

    У высших растений и водоросяей обнаружены хлорофиллы, а, b, ,d,e. Все фотосинтезирующие растения, включая все груп- [c.51]

    Фотосинтезирующие растения содержат кроме хлорофиллов так называемые дополнительные, вспомогательные, или сопрововдающие пигменты. К ним относятся гсаротиноиды и содержащиеся у некоторых групп водорослей фикобилины. Вопрос о том какова роль этих пигментов в процессе фотосинтеза, участвует ли поглощаемая ими световая энергия в построении органического вещества долгое время оставался неясным. В последние годы изучению роли этих пигментов уделено оольшое внимание и появилось много нового в выяснении их роли в процессе фотосинтеза. [c.136]

    Путь СО в фотосинтезирующем растении. В кн. , "Тр.У МБК,Механизм фотосинтеза. Ситлпозиум У1". М., Изд-во АН СССР,1962. [c.276]

    Ключевую роль в процессах переноса (превращения) энергии играет аденозйнтрифосфат (АТФ). В фотосинтезирующих растениях АТФ образуется двумя путями фотофосфорилированием и окислительным фосфорилированием. Системы, в которых протекают процессы высвобождения и трансформации энергии, тесно связаны с биологическими мембранами. Около 90% всех мембран в клетках фотосинтезирующих растений приходится на фотосинте-тические мембраны. Кроме того, процессы дыхания и окислительного фосфорилирования происходят также на внутренних мембра- [c.46]

    Установлено, что дипиридилы ингибируют перенос электронов в фотосинтезе [16, 34, 53—58]. В фотосинтезирующих растениях переносчиком электронов является железосодержащий белок фер-редоксин с окислительно-восстановительным потенциалом — 432 мв [59—61]. Очевидно, что в зеленых тканях растений во вре- [c.286]


Смотреть страницы где упоминается термин Фотосинтезирующие растения: [c.231]    [c.29]    [c.395]    [c.53]    [c.323]    [c.423]    [c.117]    [c.120]    [c.164]    [c.120]   
Введение в химию окружающей среды (1999) -- [ c.133 ]




ПОИСК







© 2024 chem21.info Реклама на сайте