Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проверка формулы Гиббса

    Точная и простая проверка формулы Гиббса была сделана Фрумкиным (1926) для адсорбции лауриновой кислоты поверхностью воды. [c.366]

    В заключение отметим, что формула Гиббса приложима к разбавленным растворам. Она служит для расчета величины адсорбции поверхностно активного вещества, если измерено поверхностное натяжение раствора при различных концентрациях его. Проверка формулы Гиббса была проведена впервые А. Н. Фрумкиным (1925). [c.240]


    Проверка формул (3.73) и (3.74) проводилась авторами путем совместного решения уравнения (3.74) с уравнением Гиббса  [c.74]

    Таким образом, характерным для просто лабильных пересыщенных систем должна явиться практическая однородность (монодисперсность) образующегося первичного золя. Размеры частиц спонтанно образовавшейся самозатравки должны быть много меньше зрелых кристаллов. Полное число частиц самозатравки N должно, согласно формуле [96] или [96, 1], очень сильно зависеть от начального пересыщения. Исследуя экспериментальную зависимость N от величины xjs , можно установить явный вид зависимости а от ж и проверить, оправдывается ли на опыте соотношение [11], вытекающее из представлений Гиббса. Дополнительной проверкой правильности этого уравнения может служить [c.119]

    Систематическую проверку формулы Гиббса на электрскапнллярныз явлениях (гл. 28) сделал также Фрумкин (1919). [c.366]

    Гипотезы, на основании которых выведено это уравнение, в действительности почти никогда не подтверждаются экспериментом. Этим объясняется, что опыты, проводивщиеся для проверки формулы Гиббса, давали сильно расходящиеся результаты. В то время как Доннап и Баркер, исследовавщие растворы нониловой кислоты в воде, и Банселен, изучавший растворы некоторых красителей, получали результаты, совпадающие с вычисленными по уравнению Гиббса, у других исследователей расчетные данные отличались от экспериментальных в тысячи раз. Возможно, однако, что тут не были соблюдены условия применимости уравнения Гиббса. На практике уравнение Гиббса неприложимо, если растворенное вещество диссоциирует на ионы (так как в этом случае необходимо учитывать активность), если оно летуче или если его молекулы способны к ассоциации с образованием мицелл. Это уравнение можно использовать далеко не во всех случаях. [c.206]

    Сильное смещение электрокапиллярного максимума в присутствии эфира было использовано Фрумкиным [7] для обращения знака заряда поверхности ртутно-окисного электрода в щелочном растворе при проведении опытной проверки уравнения Липпмана. Исходя из сг —ф-кривых (рис. 1), при ф=сопз1, были построены изотермы понижения пограничного натяжения в интервале потенциалов от —0,1 до —1,1 в, графическим дифференцированием которых в соответствии с формулой Гиббса были рассчитаны зависимости адсорбции диэтилового эфира Г от его концентрации с и потенциала ф. На рис. 2 (а и б) представлены Г—с- и Г—ф-кривые. Как следует из рисунка 2, б, максимальная адсорбция диэтилового эфира наблюдается вблизи потенциала —0,6 в (нас. к. э.). [c.65]

    Чтобы иметь возможность количественно проверить правильность данных о составах двух равновесных фаз, нужно рассчитать коэффициенты активности компонентов в одной фазе, используя данные о составе другой фазы. Уравнение Гиббса — Дюгема, преобразованное таким образом, как уже отмечалось, получило название уравнения Дюгема — Маргулеса. Применение этого уравнения для проверки экспериментальных данных о равновесии между жидкостью и паром было впервые подробно рассмотрено Битти и Калингертом [32]. Первым этапом проверки является выявление соответствия опытных данных качественным закономерностям, рассмотренным выше. С этой целью используя данные о составах равновесных фаз, температуре и давлениях паров чистых компонентов и смеси, по формулам (IV-94) рассчитывают значения коэффициентов активности компонентов и строят кривые в координатах Ig у = / (х). В соответствии с уравнением Гиббса — Дюгема, при положительных отклонениях от идеального поведения одного компонента во всем диапазоне концентраций (Ig > 0) должны быть положительны также отклонения от идеального поведения другого компонента (Ig > 0)> т. е. кривые Ig Y = / ( ) для обоих компонентов должны лежать выше оси х. Аналогично этому в системах с отрицательными отклонениями от идеального поведения во всем диапазоне концентраций кривые Ig 7 = / ( ) для обоих компонентов должны лежать ниже оси х. Несоблюдение этих положений указывает на неправильность экспериментальных данных. [c.158]



Смотреть главы в:

Физико-химические расчеты -> Проверка формулы Гиббса




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббсит

Формула Гиббса



© 2024 chem21.info Реклама на сайте