Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие процессы гидратации в жидкой фазе

    Реакции гидратации проводят в различных условиях. Так, этилен гидратируют в газовой фазе при высокой температуре и высоком давлении в присутствии фосфорной кислоты или других катализаторов. Гидратацию ацетилена проводят в жидкой (водной) фазе при повышенной температуре ( 100°) катализатором процесса служит окись ртути, растворенная в серной кислоте. Гидратация окисей этилена и пропилена протекает в водной фазе и требует лишь нагревания (не выше 150°) и соответствующего давления. [c.315]


    Гидрирование, гидролиз, гидратация, алкилирование, сульфирование, нитрование, полимеризация и другие процессы в жидкой фазе в промышленности органического синтеза проводят как непрерывно, так и периодически. Непрерывные процессы осуществляют в змеевиковых аппаратах (типа скоростных трубчаток), реакторах колонного типа или в группе емкостных аппаратов, установленных последовательно. Периодические процессы в жидкой фазе осуществляют, как правило, в реакторах с мешалкой. [c.311]

    Другие процессы гидратации в жидкой фазе [c.59]

    Примеры гомогенного катализа ка.мерный процесс получения серной кислоты, инверсия тростникового сахара, гидролиз сложных эфиров в присутствии щелочей, гидролиз крахмала, многочисленные случаи галоидирования, сульфирования, гидратации и многие другие органические реакции в жидкой фазе. [c.62]

    Процесс разрушения цементных зерен водой протекает с затухающей скоростью, что вызывается образованием на их поверхности защитных пленок из продуктов реакции и уменьшением размера гидратирующихся частиц во времени. Одной из причин быстрого образования защитных пленок на гидратирующихся зернах является отслоение от кристалла групп ионов ( блоков ), которые не могут легко перемещаться в жидкой фазе и концентрируются вблизи поверхности материала кристалла. Последующая их гидратация приводит к уплотнению пленки. Способствует образованию пленок и различная скорость диффузии ионов в растворе, вызывающая избирательное удаление из зоны реакции одних молекул (например, молекул гидроксида кальция) и концентрацию на поверхности кристалла других (например, молекул ортокремниевой кислоты). [c.311]

    Если частицы находятся в соприкосновении друг с другом или удалены на небольшое расстояние (что имеет место при невысоком водоцементном отношении) и взаимодействуют с жидкостью, то в процессе гидратации произойдет увеличение их размера. В результате они вступят в соприкосновении и при дальнейшем увеличении объема частиц произойдет их раздвижка. В этом случае объемные деформации зависят от характера окружающей среды. Если окружающая среда способна уплотняться (воздушная фаза) или перемещаться (жидкая фаза в сквозных капиллярах), то расширение также не произойдет. В случае, когда окружающая среда не способна уплотняться (твердая фаза) или перемещаться (жидкая фаза в замкнутых порах), при дальнейшем увеличении размера частиц возникают внутренние напряжения, которые вызывают расширение структуры (если она обладает определенной пластичностью). [c.366]


    Экстракцией называется процесс извлечения вещества из одной жидкой фазы в другую. Обычно одной фазой является водный раствор, второй — органическая жидкость, представляющая собой или чистый экстрагент, или раствор экстрагента в каком-либо инертном разбавителе. Для преодоления сил, удерживающих ионы в водной фазе, главным образом вследствие гидратации, необходима химическая связь экстрагента с извлекаемым соединением, но не слишком сильная, так как это затруднит последующую реэкстракцию. [c.183]

    Существует другой важный способ гидратации пропилена — процесс, протекающий частично в газовой, частично в жидкой фазах, основанный на применении твердых кислотных катализаторов, содержащих окись вольфрама в смеси с окислами других металлов, например, окисью цинка. Значительные исследования в этой области проводились во время Второй мировой войны [c.58]

    В последнее время по теории процесса твердения гипсовых вяжущих веществ появились новые исследования . Результаты этих исследований подтверждают справедливость теории процесса схватывания, выдвинутой Ле-Шателье процесс твердения гипса протекает в результате растворения полугидрата сульфата кальция и кристаллизации дигидрата из пересыщенного в отношении днгидрата раствора. Теория А. А. Байкова в части гидратации полугидрата в твердой фазе и выпадения дигидрата в коллоидальном состоянии несостоятельна. Обработка экспериментальных результатов по уравнению, выведенному А. Н. Колмогоровым для кристаллизации из жидкой фазы, привела к построению безразмерной кинетической кривой, на которой хорошо укладываются не только данные авторов, но и данные других экспериментаторов. [c.238]

    Реакции в системах газ — жидкость под давлением имеют значительное распространение в неорганической и особенно в органической химии. Достаточно хотя бы упомянуть гидрирование в жидкой фазе и синтезы на основе окиси углерода при умеренных температурах и высоких давлениях, гидратацию олефинов и многие другие процессы. Следует, однако, иметь в виду, что во многих реакциях (например, жидкофазного гидрирования) равновесие уже при атмосферном давлении практически полностью смещено в сторону продуктов реакции, и высокое давление применяется для ускорения процесса. Подобные реакции будут поэтому рассматриваться во второй части книги, посвященной выяснению влияния давления на скорость химических реакций. [c.52]

    По мнению авторов, увеличение скорости гидратации при введении некоторых добавок связано с резким ростом степени пересыщения жидкой фазы по Са(ОН)г (см. рис. 12) и дестабилизирующим действием этих добавок на ассоциаты и зародыши гидроксида кальция. С другой стороны, некоторые добавки (например, высокомолекулярные ПАВ) повышают произведение растворимости [Са +] [ОН-] и одновременно замедляют процесс гидратации, оказывая стабилизирующее действие на зародыши гидрата. [c.78]

    Применение ионообменных смол в качестве катализатора позволяет провести гидратацию изобутилена в жидкой фазе, что не удается сделать с другими предлагавшимися для этой цели катализаторами вследствие их разрушения водой, и, таким образом, получить высокую производительность катализатора при конверсии олефина (за один проход около 50%). Процесс предложено осуществлять в реакторе скрубберного типа, куда в качестве насадки загружается ионообменная смола, по которой непрерывно стекает вода и проходит газообразный олефин. [c.288]

    Но реакции гидратации и дегидратации представляют не только исторический интерес. Они открывают широкие возможности дальнейшего глубокого изучения катализа. Во-первых, эти реакции, как было показано в предыдущей главе, протекают параллельно реакциям дегидрогенизации, что Баландин, Рогинский, Рубинштейн и другие химики использовали для выяснения вопроса о характере контакта органических реагентов с катализаторами. Во-вторых, реакции гидратации и дегидратации, протекая одинаково легко в присутствии кислот в растворах и солей и окислов в жидкой и паровой фазах, указывают на какую-то общность между процессами гомогенного и гетерогенного катализа. Реакции гидратации и дегидратации интересны еще тем, что они, подобно реакциям гидро- и дегидрогенизации, тесно связаны со многими другими реакциями, в процессе которых создаются или разрываются углерод-углеродные связи. Это обстоятельство должно способствовать решению вопроса о механизме реакций полимеризации,, алкилирования и крекинга. Наконец, реакции гидратации и дегидратации играют, вероятно, решающую роль в биологических процессах синтеза и распада белков, жиров, углеводов и высокомолекулярных веществ ферментативного. назначения. [c.262]


    Еще лучшие технологические условия достигаются в ряде процессов переводом реагирующих веществ в газовую фазу (испарением их). Многие реакции, которые в жидкой фазе проводятся в несколько стадий, удалось осуществить прямым путем, в газовой фазе на твердых катализаторах, применяя высокие температуры. Примерами могут служить прямая гидратация этилена (см. гл. ХУП1), прямое восстановление нитробензола в анилин и многие другие газовые каталитические реакции, которые пришли на смену малоэффективным, громоздким по аппаратурному оформлению процессам в жидкой фазе. Газовые каталитические реакции можно проводить непрерывно, в малогабаритной аппаратуре (благодаря высоким скоростям реакций), циклически, с минимальными потерями реагентов, с полной автоматизацией производства. [c.144]

    Для регулирования ироцесса структурообразования применяют вибрационные, ультразвуковые, кавитационные, электрогидравли-ческие, электромагнитные, электрохимические и другие воздействия.. Все они направлены на ускорение процесса структурообразования и улучшение свойств образующегося цементного камня. Механизм их действия заключается в разрушении экранирующих пленок продуктов гидратации вокруг зерен цемента, препятствующих массообмену между зоной реакции и окружающей жидкой фазой п замедляющих тем самым процесс гидратации. Другое назначение этих методов состоит в разрушении коагуляционных и непрочных конденсационно-кристаллизационных контактов, образующихся на ранней стадии твердения. При этом улучшаются реологические свойства цементной суспензии (повышается ее подвижность) и улучшаются условия образования конечной структуры. [c.115]

    Непооредственная гидратация ацетилена в уксусный альдегид — крайне экзотермическая реакция, которая проводится в жидкой или паровой фазах,, В промышленно м масштабе гидратация осуществляется пропусканием тока ацетилена через разбавленную серную кислоту в присутствии катализатора. Катализатор обычно состоит из ртутной соли, например сульфата ртути, растворенной в кислоте. Обсуждение в деталях огромной литературы> по этому синтезу лежит вне пределов данной работы. Приведем один из процессов превращения ацетилена в уксусный альдегид сильный ток ацетилена, около 1,7—1,8 Л1 в минуту., пропускается через хорошо перемешиваемую жидкость, состоящую из 4300 л 6%- ной серной кислоты, к которой добавлено 10—11 кг окиси ртути. Реакция протекает при обычной температуре с выделением тепла, так что необходимо охлаждение для регулировки и удержания температуры в пределах 60—65°. Избыток ацетилена уносит прочь образовавшийся альдегид, который выделяется охлаждением отходящих газов и ректификацией. Вследствие медленного, но непрерывного восстановления ртутной соли дО металлической ртути необходимо добавлять время от времени свежей окиси ртути. Металлическая ртуть вновь окисляется электролитически. Выход альдегида достигает 98% от затраченного ацетилена. В других процессах применяется более концентрированная серная кислота (15—25%) при 65—80°. Указывалось, что восстановление ртутной соли дс металлической ртути можно предотвратить прибавлением таких окислителей, как. соли окиси железа или хромовая кислота [c.738]

    К. к.-о. приобрел за последние годы исключительно важное практич. значение в химич. процессах, осуществляемых в промышленном масштабе. К числу таких важнейших процессов относятся гидратация и изомеризация олефинов, этерификация спиртов, нитрование углеводородов, гидролиз крахмала и других полисахаридов, алкилирование ароматич. соединений, каталитич. крекинг нефти, синтез высокомолекулярных соединений методами ионной полимеризации и др. Процесс парофазной гидратации этилена в этиловый сиирт, являющийся основным источником синтетич. этилового снирта, осуществляется с использованием в качестве катализатора фосфорной к-ты, нанесенной на пористые силикатные носители. Аналогичные катализаторы применяются при парофазном алкилированип бензола олефинами. Катализаторами алкилирования ароматич. соединений в жидкой фазе служат хлористый алюминий или фтористый бор. Широкое применение в качестве катализаторов процесса полимеризации нек-рых непредельных углеводородов получили фтористый бор, хлорное олово и др. Напр., полимеризация иаобутилена при каталитич. действии BFg протекает с очень большой скоростью при весьма низких темп-рах (ок. —100°). Для каталитич. крекинга нефтп используют алюмосиликатные катализаторы, поверхность к-рых обладает кислотными свойствами- Большая практич. значимость К. к.-о. определила интенсивное развитие исследований в последние годы в области практич. использования кислот и оснований как катализаторов различных процессов и в направлении выявления закономерностей и механизма каталитич. действия этого класса соединепий. [c.241]

    Описан процесс прямой гидратации пропилена в жидкой фазе с использованием катионообменной смолы в качестве катализатора. Механизм реакции аналогичен механизму прямой гидратации на других катализаторах кислотного типа. В качестве сырья используется 92 %-ный пропилен. Температура реакции сравнительно низкая (130—150°С), что термодинамически выгодно. По мере дезактивации катализатора температуру несколько повышают. Давление в реакторе от 5,9 до 10 МПа. С повышением давления возрастают количество пропилена, растворенного в жидкой фазе, и степень конверсии его в спирт. Мольное соотношение вода пропилен колеблется от 12,5 1 до 15 1. В этих условиях степень конверсии пропилена достигает 75%, а количество побочных продуктов (диизопропилового эфира и полимеров) очень мало. Благодаря высокой степени конверсии пропилена количество непрореагировавшего газа невелико, и его не возвращают в процесс, а направляют на концентрирование пропилена. [c.373]

    Хроматография моносахаридов. Для обнаружения, разделения и идентификации углеводов применяют различные хроматографические методы. В предыдущие годы чаще других использовали метод бумажной хроматографии. В процессе хроматографирования происходит распределение вещества между стационарной жидкой фазой (вода на бумаге) и подвижной органической фазой. Значение Ri зависит от растворимости в подвижной органической фазе моносахарида в стабильной конформации, что, в свою очередь, определяется степенью гидратации гидроксильных групп. Известно, что экваториальные гидроксильные группы гидратируются легче, чем аксиальные, которые пространственно более затруднены. Вследствие этого увеличение числа эквато1риальных групп уменьшает растворимость вещества в органиче- [c.38]

    Гидратация каталитическая — один из основных классов ката.дитич. реакций в оргаиич. химии — протекает без отщепления каких-либо других групп (в отличие от реакций гидролиза). Реакции гидратации можно проводить в гомогенной или гетерогенной среде. Гомогенная, или т. н. кислотная, гидратация проводится обычно прп помощи жидких неорганич. к-т (серной, фосфорной). Иногда нри этом добавляют соли ртути (см. кучерова реакция). При гетерогенной, или т. н. п р я -м о й, гидратации в паровой фазе применяют различные катализаторы, имеющие обычно кислотные свойства (фосфаты меди, цинка, кадмия, различные окислы, нанр. окислы вольфрама, активированные окисью цинка и нанесенные на силикагель, активированная А]. Оз с различными добавками, СиО -Ь МпО Ч-4Н3РО4, а также Н3РО4 с различными добавками на твердых носителях). Преимущества гетерогенной гидратации значительно меньшая затрата энергии, большая легкость осуществления непрерывных процессов, отсутствие необходимости в коррозионноустойчивой аппаратуре и др. [c.448]


Смотреть страницы где упоминается термин Другие процессы гидратации в жидкой фазе: [c.121]    [c.123]    [c.168]    [c.9]    [c.230]    [c.230]    [c.230]    [c.828]    [c.353]    [c.168]   
Смотреть главы в:

Химия и технология пропилена -> Другие процессы гидратации в жидкой фазе




ПОИСК





Смотрите так же термины и статьи:

Другие процессы

Жидкая фаза



© 2025 chem21.info Реклама на сайте