Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репрессор тетрамерная структура

    Нуклеотидная последовательность в операторном участке была установлена [43] путем расщепления ДНК дезоксирибонуклеазой в присутствии репрессорного белка. Будучи связанным, репрессор защищает участок, состоящий из 27 нуклеотидных пар (показано на рисунке). Поразителен тот факт, что центральная часть оператора располагается в участке с вращательной симметрией второго порядка (гл. 2, разд. Г, 11). В результате цепь ДНК оказывается способной образовывать петли, благодаря которым структура ДНК приобретает крестообразную форму (рис. 2-30 и 15-4) [44]. Есть все основания думать, что такая структура может легче связываться с тетрамерным репрессор-ным белком, чем линейная форма. [c.204]


    Активный /ас-репрессор представляет собой тетрамер, построенный из четырех идентичных полипептидных цепей, кодируемых геном lad. Каждая цепь содержит 360 аминокислотных остатков. Реализация двух аспектов функционирования репрессора-связывание с ДНК и связывание с индуктором-определяется двумя различными участками структуры цепи. В связывании тетрамерного репрессора с ДНК основную роль играет N-концевая последовательность, содержащая около 50 аминокислотных остатков. [c.177]

    Минимальный эффективный размер оператора, с которым может связаться молекула La -репрессора, составляет 17 пар оснований (выделены жирным шрифтом). В каждый данный момент времени с оператором связаны две субъединицы репрессора. Внутри последовательности в 17 пар оснований по крайней мере одно основание каждой пары принимает участие в узнавании и связывании репрессора. Связывание происходит в основном в большой бороздке ДНК без нарушения нормальной двухспиральной структуры области оператора. Участок молекулы репрессора, включающий первые 52 аминокислотных остатка, связывается с ДНК, не проявляя, судя по всему, специфичности к какой-то определенной последовательности. Другая область репрессора (остатки с 53 по 58) строго специфично связывается с 17-звенным фрагментом операторной области протяженностью 6—7 нм. Аминокислотные остатки в положении 74—75 особенно важны для связывания индуктора с молекулой репрессора. Операторный локус находится между промотором, к которому перед началом транскрипции присоединяется ДНК-зависимая РНК-полимераза, и началом гена Z— структурного гена 3-галактозидазы (рис. 41.3). Присоединившись к оператору, репрессор препятствует транскрипции операторного локуса и дистальных структурных генов Z, Y vi А. Таким образом, репрессор является негативным регулятором в его присутствии подавляется экспрессия Z, У и Л-генов. Обычно на клетку приходится 20—40 тетрамерных молекул репрессора и 1—2 операторных локуса. [c.113]

    Если N-концевой участок является ответвлением, способным связываться с ДНК, какова функция тетрамерной структуры и как она контактирует с ДНК Согласно одной из моделей, предполагается, что репрессор имеет форму удлиненной гантели или цилиндра длиной примерно 115 А, ось которой может пересекаться с осью ДНК, образуя небольщой угол, равный 15-20°. Ядра всех четырех субъединиц контактируют своими центральными областями N-концевые участки связывания находятся по краям молекулы, располагаясь парами. Не исключено, что на самом деле только две из четырех субъединиц контактируют с ДНК, оставляя два других участка связывания с ДНК незанятыми. Хотя ядро субъединицы не узнает операторного участка, оно все же способно связываться с ДНК неспецифически, так что, по-види-мому, оно также осуществляет контакты (хотя они не являются настолько, выраженными, чтобы оказывать влияние на характер защиты ДНК в той же мере, как это делает один N-концевой фрагмент). [c.185]


    Переход линейной двойной спирали в крестообразную структуру Требует значительного распрямления спирали, откуда следует, что молекулы с отрицательными супервитками ДНК должны связывать репрессор более прочно, чем ДНК без суперспиральных витков (гл. 2, разд. Г, 9). Экспериментальные данные указывают на то, что развертывание /ас-репрессором может осуществляться всего лишь на 40—90°. Таким образом, связывание /ас-репрессора сопровождается, по-видимо-му, слабым нарушением двухспиральной структуры [45]. Тем не менее симметрия второго порядка имеет, по-видимому, важное значение для прочного связывания двух субъединиц симметричного тетрамерного белка. [c.204]

    Другой пример сильного взаимодействия белка с ДНК—регуляция оперона белком-репрессором. Наиболее изученным примером является 1ас-оперон Е. соИ [25]. Ген-регулятор кодирует синтез белка 1ас-репрессора, который затем связывается с соседним оператором. Связывание с белком-репрессором малой молекулы— индуктора, например изопропилтио-р- )-галактопиранозида, вызывает диссоциацию репрессора с операторного участка. Последующая транскрипция трех соседних генов оперона приводит к биосинтезу трех ферментов — Р-галактозидазы, галактозопермеазы и тиогалактозидтрансацетилазы. 1ас-Репрессор представляет собой тетрамерный белок, состоящий из идентичных субъединиц по 347 аминокислот каждая. Сродство репрессора к последовательности ДНК оператора зависит от ионной силы константа диссоциации в клетке, вероятно, менее 10 " моль/л . Структура участка связывания ДНК в 1ас-репрессоре до сих пор не выяснена, однако удаление трипсином 59 остатков с Л -конца и 20 остатков с С-конца предотвращает связывание. Несколько больше известно об участке связывания индуктора. Измерения флуоресценции показывают, что находящийся в участке связывания индуктора остаток триптофана при связывании перемещается в менее полярное окружение. Изучение изменения флуоресценции методом остановленного потока показывает, что процесс связывания проходит в две стадии. Быстрая начальная стадия подчиняется, как и ожидалось, кинетике второго порядка. Более медленная стадия мономолекулярна и, по- [c.569]


Биохимия Том 3 (1980) -- [ c.204 ]




ПОИСК







© 2025 chem21.info Реклама на сайте