Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотидная последовательность

    В клетке межнуклеотидные связи в ДНК и РНК расщепляются нуклеазами — обширным классом ферментов, представители которого различаются по механизму действия и специфичности (табл. 1), Среди нуклеаз, приведенных в таблице, нужно особо выделить эндонуклеазы рестрикции (рестриктазы). ферменты (их функции рассмотрены в гл. VI) узнают в молекулах ДНК не отдельные нуклеотидные остатки, а нуклеотидные последовательности из четырех, пяти или шести остатков и поэтому расщепляют любую ДНК на сравнительно небольшое число строго определенных фрагментов. [c.13]


    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]

    Определение нуклеотидных последовательностей в составе гомологичных генов (например, генов глобинов), кодирующих полипептиды со сходным строением и функцией у одного или разных организмов, показало, что наибольшим изменениям в эволюции подвергались интроны, а не экзоны. В интронах обнаружены встав ки, делеции и другие перестройки, в то время как последователь ности экзонов оказываются значительно более консервативными Изменения в нуклеотидных последовательностях экзонов часто обу словлены лишь отдельными нуклеотидным заменами. Эти наблю дения также можно истолковать в пользу представлений о том, что [c.194]

    Транскрипция является первой стадией реализации (считывания) генетической информации, на которой нуклеотидная последовательность ДНК копируется в виде нуклеотидной последовательности РНК. В основе. механизма копирования при транскрипции лежит тот же структурный принцип комплементарного спаривания оснований, что и прн репликации. Транскрипция осуществляется ферментами РНК-полимеразами, синтезирующими РНК на ДНК-мат-рице из рибонуклеозидтрифосфатов. [c.133]

    Определение нуклеотидной последовательности РНК [c.19]

    Определение нуклеотидной последовательности ДНК [c.15]

    Генетическая информация, необходимая для управления синтезом белков со строго определенной структурой, закодирована нуклеотидной последовательностью цепи ДНК. [c.664]

    Промоторные элементы генов одноклеточных эукариот — дрожжей — содержат сайты инициации (И), нуклеотидную последовательность ТАТА (обычно ТАТААА), а также другие элементы — активирующие последовательности (АП, UAS, англ. upstream a tivating sequen es), находящиеся перед сайтом инициации транскрипции (рис. 111, а). Кроме того, промотор может содержать элементы оператора О, участвующего в репрессии транскрипции. Расстояние между ТАТА-элементом и сайтом инициации может варьировать от 40 до 120 п. н., и в отличие, например, от промоторов позвоночных в промоторах дрожжей правильная точная инициация транскрипции сохраняется при изменении расстояния между сайтом инициации и ТАТА-элементом. Инициаторный элемент представляет собой особый участок, включающий нуклеотидную последовательность [c.196]


    Пространственная организация макромолекул ДНК и РНК задается их нуклеотидной последовательностью и описывается структурами двух уровней вторичной н третичной. [c.20]

    Применение автоматов позволяет в принципе определять полную нуклеотидную последовательность ДНК, составляющей геном любого организма, включая геном человека. [c.19]

    Определение нуклеотидных последовательностей сателлитных [c.188]

Рис. 6. Схема определения 13-членной нуклеотидной последовательности в 30-членном фрагменте ДНК по Максаму — Гилберту Рис. 6. <a href="/info/24353">Схема определения</a> 13-членной <a href="/info/98217">нуклеотидной последовательности</a> в 30-членном фрагменте ДНК по Максаму — Гилберту
    Таким образом, полная нуклеотидная последовательность мно-гих классов РНК (длиной до 250—300 н. о.) может быть пря.мо оп- [c.19]

    Необходимым компонентом системы сплайсинга гигантских ядерных предшественников мРНК являются так называемые малые ядерные РНК- Эти РНК обогащены уридином, поэтому они получили название U РНК U1, U2, U3, U4 и т. д. Они легко разделяются с помощью электрофореза. Разные малые ядерные РНК отличаютсл числом нуклеотидов, входящих в их состав (от 90 до 400). Обнаружена исключительная консервативность нуклеотидных последовательностей малых ядерных РНК птиц, млекопитающих и дрозофилы. [c.177]

    Фактор р присоединяется к РНК-продукту до того, как РНК-полимераза достигает терминатора. Присоединение происходит к определенным участкам РНК, в нуклеотидной последовательности которых пока не обнаружено каких-либо характерных особенностей. Ясно лишь, что эти участки не склонны к образованию протяженных двуспиральных структур. [c.157]

    Механизм возникновения таких структур не ясен. Нуклеотидные последовательности (234 п. н.) по длине сателлитной ДНК мыши могут варьировать за счет отдельных замен, вставок или делеций. [c.189]

    Промоторный район гена теплового шока дрозофилы, кодирующего белок с уМг=70 ООО, содержит следующую нуклеотидную последовательность  [c.200]

    Фрэнсис Крик устроен совсем иначе. Профессионал в структурном анализе, он был уверен в верности их с Уотсоном работы. Кроме того, как ни важна структура ДНК, его интересовали и другие проблемы молекулярной биологии. Отсюда разные пути этих людей в дальнейшем. Крик продолжал плодотворно работать гипотеза о существовании особой РНК, перекодирующей нуклеотидные последовательности в белковые доказательство в изящном эксперименте триплетности генетического кода построение молекулярной модели изломов в ДНК... [c.132]

    Из этих веществ Эйген строит са-мовоспроизводящийся гиперцикл . Модель цикла состоит из ряда нуклеотидных последовательностей — комплементарных цепей РНК (Ь) с ограниченной длиной цепи. Цепи кодируют одну или две активные полипептидные цепи (Ег). Каждый нуклеотидный коллектив способен к комплементарному инструктированию и состоит из двух ветвей ( положительной и отрицательной ), взаимновоспроизводящих друг друга. Процесс воспроизведения специфично катализируется предшествующей полипептидной цепью Е,-1, которая, в свою очередь, кодируется нуклеотидной цепью 1,-1. Полипептидная ветвь В,-, по мысли Эйгена, может выполнять различные функции она [c.384]

    В середине 1960-х годов начались исследования нуклеотидных последовательностей РНК. Первыми были определены первичные структуры тРНК (Р. Холли и сотр., 1965 А. А. Баев и сотр., 1967). Развитие техники фракционирования фрагментов нуклеиновых кислот и прежде всего гель-электрофореза (Ф. Сэнгер и сотр.) позволило в начале 1970-х годов приступить к изучению первичной структуры высокомолекулярных РНК. В 1976—1978 гг. были созданы исключительно быстрые и эффективные методы секвени-рования ДНК и РНК (А. Максам и У. Гилберт, Ф. Сэнгер и сотр.), которые позволили за короткое время получить огромную информацию о первичной структуре генов, их регуляторных элементах, вирусных и рибосомных РНК и т. д. [c.7]

    Современные методы определения нуклеотидной последовательности ДНК позволяют в одном эксперименте просеквенировать (от англ. sequen e — последовательность) ее фрагмент длиной в 150—300 нуклеотидных остатков (и.о.). Поэтому исходная молекула ДНК предварительно фрагментируется. Для этого чаще всего ДНК гидролизуют рестриктазами (причем проводится независимое расщепление двумя рестриктазами или более, в результате чего образуются перекрывающиеся фрагменты (рис. 5). Это позволяет после определения нуклеотидной последовательности соответствующих фрагментов реконструировать первичную структуру всей [c.15]

    Существует два принципиально различных подхода к определению нуклеотидной последовательности ДНК. Первый из них предложен А. Максамом и У. Гилбертом и основан на специфическом химическом расщеплении полинуклеотидной цепи. Последовательность операций при секвенировании ДНК методом Максама — [c.15]

    Транскрипцию генов рибосомных РНК, тРНК и большинства генов, кодирующих белки, обеспечивают молекулы РНК-полимеразы, содержащие главную а-субъединицу (молекулярная масса у Е. oli 70 кД, у Вас. subtilis— 43 кД). На несколько тысяч молекул РНК-полимеразы, имеющихся в бактериальной клетке, приходится примерно тысяча молекул главной а-субъединицы. В меньших количествах имеются минорные а-субъединицы, используемые для транскрипции ограниченного числа генов (см. раздел 3 этой главы). Набор минорных а-субъединиц у разных бактерий неодинаков. По размеру они меньше главной а-субъединицы. Сравнение нуклеотидных последовательностей генов разных а-субъединиц свидетельствует о том, что все они произошли от одного предкового гена. [c.135]


    В самых больших субъединицах эукариотических РНК-полимераз обнаружено несколько участков, которые по аминокислотной последовательности у всех трех форм сходны между собой и с -субъединицей РНК-полимеразы Е. oli. В следующих за ними по раз.меру субъединицах эукариотических РНК-поли.мераз обнаружено сходство в аминокислотной последовательности с -субъе-диницей РНК-полимеразы Е. oli. Эти данные свидетельствуют о том, что на заре эволюции эукариот у них имелась одна форма РНК-полимеразы, а разные формы возникли за счет умножения предко-вых генов (общих для про- и эукариот) и последующего расхождения их нуклеотидных последовательностей в результате множества мутаций. [c.136]

    При сравнении нуклеотидной последовательности большого числа промоторов . OU, узнаваемых РНК-полимеразой, содержащей главную о-субъедииицу, оказалось, что одинаковых среди них нет. Сходство. между ними обнаружилось в основном в двух > част-ках длиной по 6 п. н., центры которых располагаются в районах —10 и —35 п, н. (нумерация нуклеотидов про.мотора ведется от стартовой точки, которой приписывается номер +1 рис. 85). Некоторое сходство наблюдается также в районе стартовой точки. [c.140]

    На основании сравнения последовательностей разных промоторов выведена каноническая последовательность промотора, в которой представлены наиболее часто встречающиеся в каждом положении нуклеотиды. Каноническая последовательность участка —10 — ТАТААТ (эта последовательность называется также блоком Приб-нова), участки —35 — TTGA A (при рассмотрении промоторов обычно приводят последовательность только той нити ДНК, которая в транскрибируемой части совпадает с последовательностью РНК, т. е. является незначащей). Каноническая последовательность промотора несимметрична, что отражает его функциональную несимметричность. Действительно, промотор определяет не только место начала транскрипции, но и ее направление. Среди природных промоторов пока не обнаружено ни одного с канонической последовательностью, но искусственно сконструированный промотор с канонической последовательностью отличается очень высокой эффективностью (этот результат не был заранее очевиден усредненная последовательность вполне могла бы обладать средними свойствами). О том, что каноническая последовательность является наиболее эффективной, свидетельствуют и результаты многочисленных данных по мутационным изменениям последовательности промоторов изменения, приближающие последовательность промотора к канонической, как правило, увеличивают его силу, тогда как изменения, уменьшающие его сходство с канонической,— уменьшают его силу. Изменения нуклеотидной последовательности вне участков —10 и —35 обычно слабо сказываются на силе промотора. Знание этих закономерностей, однако, еще не позволяет надежно предсказывать силу промоторов и находить промоторы, рассматривая последовательность ДНК, хотя РНК-полимераза делает это очень быстро. [c.141]

    Промоторы, используемые РНК-полимеразами, содержащими минорные сг-субъединииы, заметно отличаются по нуклеотидной последовательности от промоторов, используемых РНК-полимеразой, содержащей главную о-субъединнцу. Для каждого типа о-субъеднннцы характерна своя каноническая последовательность участков, аналогичных участкам —35 и —10 . [c.142]

    Три операторных участка 0 ,, 0 2, Од, нескмько отличаются по нуклеотидной последовательности. Отличается и сродство репрессора к этим участкам. Однако картина распределения молекул репрессора на трех операторных участках зависит не только от относительного сродства репрессора к каждому нз этих участков, взятых по отдельности, но и от взаимодействия между димерами репрессора. присоединившимися к соседним участкам. Наибольшим [c.146]

    Оператор лактозного оперона располагается сразу за стартовой точкой транскрипции. Долгое время считалось, что присоединение лактозного репрессора к про.мотору стерически мешает присоединению РНК-полимеразы. Однако недавно получены данные, свидетельствующие о том, что репрессор н РНК-полимеразы могут расположиться на промоторе рядом друг с другом. Поэтому приходится ду.мать о более изощренных механизмах репрессии, включающих специфические контакты репрессора с РНК-полимеразой. В лактозном опероне имеется два псевдооператора, сходных по нуклеотидной последовательности с оператором, но обладающих [c.150]

    Промотор гена глутаминсинтетазы замечателен не только те.м, что он регулируется с участием минорной сигма-субъединицы и нуклеотидных последовательностей, удаленных на большие расстояния от старта транскрипции, но и тем, что действие регуляторного белка. модулируется не путе.м связывания лигандов-эффекторов, которыми могли бы быть глута.мин или глутаминовая кислота, а путем хи.мической модификации — фосфорилирования и дефосфо-рилирования NR,,— осуществляемой несколькими ферментами, реагирующими на обеспеченность клетки источниками азота. [c.153]

    В их отсутствие РНК-полимераза способна терминировать синтез РНК лишь на некоторых терминаторах, нуклеотидная последовательность в районе которых отличается двумя характерными особенностями. В них по ходу транскрипции сначала идет ОС-богатый участок, обладающий центральной симметрией, а затем участок из 4—8 расположенных подряд А в значащей нити. Транскрипция заканчивается на конце олигоА последовательности или сразу за ней. Предпадагается, что после прохождения РНК-полимеразой ОС-богатого участка с центральной симметрией в РНК-продукте возникает шпилька, приводящая к остановке РНК-полимеразы и разрушению части РНК-ДНК гибрида транскрибирующего комплекса. Оставшаяся часть РНК-ДНК гибрида, содержащая концевую олигои последовательность РНК, легко плавится ввиду относительной нестабильности rU-dA-nap, что приводит к освобождению РНК-продукта (рис. 94). Первым из комплекса освобождается РНК-продукт, а затем РН К-полимераза. В какой момент происходит схлопывание нитей ДНК, пока не известно. [c.155]

    Однако р-фактор вызывает терминацию не во всех местах пауз. Например, в случае транскриптов. инициированных на уже известном нам промоторе Р фага Я. р-зависимая терминация происходит лишь в местах пауз, расположенных от промотора на расстояниях, больших 290 н. п., хотя длительные паузы возникают и в более близких к промотору местах. Анализ нуклеотидной последовательности показывает, что начальная часть РНК способна образовывать большое число двунитчатых структур. По-видимому, в данном случае сильно развитая вторичная структура транскрипта мешает связыванию с ним р-фактора. без которого терминации в местах пауз не происходит. [c.157]

    Протяженные транскрипты эукариотических генов содержат последовательности интронов (см. гл. IX, раздел 2), которые при образовании мРНК вырезаются, тогда как нуклеотидные последовательности экзонов сшиваются, т. е. происходит процесс сплайсинга (рис. 102). [c.172]

    У высших многоклеточных эукариот (насекомых, позвоночных) в пределах 100—200 п. н. перед стартом транскр.чпции (рис. 111, б) была выявлена более сложная мозаика промоторных элементов, представленных короткими нуклеотидными последовательностями ( мотивами )). На расстоянии 27—.30 п. н. от кэя-сайта расположен ТАТА-мотив, усредненный вариант которого (так называемый соп- [c.198]

    Гены, кодирующие адаптивные белки, образование которых резко усиливается под влиянием разных факторов среды (повышение температуры, отравление металлами), содержат в составе промоторов дополнительные характерные короткие нуклеотидные последовательности. В ответ на повышение температуры или другие стрессы (например, отравление ядами) вырабатываются особые белки, naiy-чившие название белков теплового шока. Считается, что быстрое накопление таких белков в клетке обеспечивает физиологическую адаптацию к изменившимся условия.м среды. Эти белки чрезвычайно консервативны, они мало менялись в эволюции. Например, белки, имеющие Mr=lQ ООО и образующиеся после теплового шока в клетках . соИ, растений, насекомых и млекопитающих, проявляют большую степень гомологии по аминокислотной последователь- [c.199]


Смотреть страницы где упоминается термин Нуклеотидная последовательность: [c.264]    [c.117]    [c.20]    [c.38]    [c.38]    [c.137]    [c.149]    [c.153]    [c.165]    [c.167]    [c.170]    [c.170]    [c.177]    [c.178]    [c.179]    [c.188]   
Органическая химия (1979) -- [ c.665 ]

Биоорганическая химия (1987) -- [ c.31 , c.309 , c.316 , c.316 , c.317 ]

Современная генетика Т.3 (1988) -- [ c.155 , c.260 , c.261 ]

Генетика человека Т.3 (1990) -- [ c.123 , c.131 ]

Биофизическая химия Т.3 (1985) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте