Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

От информационной блок-схемы к цифровой форме

    ОТ ИНФОРМАЦИОННОЙ БЛОК-СХЕМЫ К ЦИФРОВОЙ ФОРМЕ [c.30]

    Затем изложены принципы построения моделируюш их алгоритмов ФХС по диаграммам связи. Приведение математической модели ФХС к форме информационного потока в виде блок-схемы является основной промежуточной стадией между формулировкой уравнений модели и составлением программы численного решения уравнений на ЭВМ. Существующие методы блочно-ориентированного программирования требуют наличия полных аналитических описаний всех составных частей системы, недостаточно формализованы, и эффективность этих методов в значительной мере определяется уровнем квалификации и интуицией исследователя. Рассматриваемый метод топологического описания ФХС открывает путь к формализованному построению полного информационного потока системы в виде блок-схемы непосредственно по связной диаграмме ФХС без записи системных уравнений, что снижает вероятность принятия ошибочных решений. При этом блок-схема моделирующего алгоритма ФХС всегда основана на естественных причинно-следственных отношениях, соответствующих механизму исследуемого физико-химического процесса. Моделирующий алгоритм, синтезированный по связной диаграмме, представляет блочно-ориентированную программу более высокого уровня, чем информационные потоки, составленные вручную на основе аналитического описания ФХС. В такой программе каждому блоку соответствует определенный оператор, а сам алгоритм непосредственно подготовлен для программирования на аналого-цифровых комплексах с применением современных операционных систем. [c.292]


    Для того чтобы понять эту книгу, достаточно представлять себе цифровую вычислительную машину как комплекс, состоящий из быстродействующего арифметического устройства, выполняющего по заранее составленной программе арифметические и логические операции (сложение, умножение, логическое отрицание и т. д.), запоминающего устройства для хранения программы вычислений, исходных данных и получающихся результатов, управляющего устройства, автоматически выполняющего программу вычислений, устройства ввода данных, необходимых для счета, и устройства вывода промежуточных и окончательных результатов. Здесь не рассматриваются детально подробности программирования, но надо заметить, что между уравнениями и программой вычислений в машип-цом коде имеется промежуточная стадия, которая состоит в приведении программы решения к виду блок-схемы или к форме информационного потока. [c.30]

    Информационная блок-схема изображает аппараты и трубы, ко-орые и составляют производственную установку. Трубы показаны трелками, указывающими направление потока вещества. Схему ложно закодировать в цифровой форме для использования в вщч [c.27]

    Обычно информационную блок-схему кодируют в цифровой форме, чтобы облегчить вычисления. Рассмотрим четыре метода кодирования. Первым из них будет рассмотрен метод с использованием матрицы процесса, так как она содержит всю информацию об информационной блок-схеме. Программа PA ER для кодирования информационной блок-схемы использует матрицу процесса. [c.30]

    Было описано преобразование технологической схемы в информационную блок-схему и рассмотрены варианты методов для представления информационной блок-схемы в цифровой форме, а также методы определения местонахождения замкнутых контуров из такой цифровой формы. В следующей главе более Детально обсуждается метод, используемый программой PA ER. [c.50]

    Архитектура ЭС — это функционально-информационная структура программно-аппаратурных средств ЭС, обеспечивающих накопление и переработку знаний для поиска решений НФЗ в процессе интеллектуального общения ЛПР и ЭС. Архитектура типичной идеальной ЭС в химической технологии, блок-схема которой представлена на рис. 7.1, включает следующие основные компоненты база знаний (БЗ) база данных (БД) база целей (БЦ) рабочая память, или рабочая база знаний (РБЗ) подсистема вывода решений (ПВР) подсистема интеллектуального интерфейса (ПИИ) подсистема поддержки и отладки (ППО) подсистема цифрового моделирования (ПЦМ) подсистема объяснения решений (ПОР) подсистема координации и управления (ПКУ). Кратко рассмотрим характеристику и назначение каждого компонента архитектуры ЭС. База знаний — эго основа интеллектуального обеспечения ЭС, представляющая собой совокупность программных средств, которые обеспечивают хранение, накопление, удаление, поиск, переработку и запись в память ЭВМ разнообразных компьютерно реализованных МПЗ в различных сложно структурированных формах (см. гл. 2). Для ЭС в химической технологии БЗ содержат МПЗ трех типов знаний предметные знания управляющие знания и метазнания. Предметные знания — эго совокупность декларативных и процедурных знаний ПО (см. ра зд. 1.2). Управляющие знания — совокупность знаний о различных стратегиях принятия решений в ПО. [c.192]



Смотреть страницы где упоминается термин От информационной блок-схемы к цифровой форме: [c.28]   
Смотреть главы в:

Математическое моделирование химических производств -> От информационной блок-схемы к цифровой форме




ПОИСК





Смотрите так же термины и статьи:

Информационная РНК



© 2024 chem21.info Реклама на сайте