Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа равновесно существующих фаз

    Понятие геометрической конфигурации молекулы лежит в основе современного учения о строении молекул и определяется равновесной конфигурацией пространственного расположения ядер атомов, образующих молекулу. Эта конфигурация не может быть рассчитана для сколько-нибудь сложной молекулы путем строгого решения соответствующей квантовомеханической задачи. Существует ряд приближенных моделей, методов и теорий, которые используются для систематического анализа накопленных экспериментальных данных по геометрическим конфигурациям молекул. В определенных пределах они часто позволяют не только дать разумное объяснение наблюдаемых конфигураций, но на основе установленных закономерностей и корреляций также правильно предсказывать геометрию еще не изученных молекул, что не раз подтверждалось опытом. [c.5]


    Другим современным методом, служащим для построения диаграмм состояния, является метод рентгеноструктурного анализа. Рентгеноструктурный анализ является одним из наиболее совершенных методов изучения всех превращений, сопровождающихся изменением кристаллической решетки. Поэтому он особенно полезен при исследовании полиморфных превращений, образования и распада твердых растворов, а также образования химических соединений. Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения. Рентгеноструктурный анализ применяется для качественного и количественного фазового анализа гетерогенных систем, для исследования изменений в твердых растворах, определения типа твердого раствора и границ растворимости. Рентгеноструктурный анализ является дифракционным структурным методом он основан на взаимодействии рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновского излучения. Основную информацию в рентгеноструктурном анализе получают из рентгенограмм. Типы рентгенограмм сильно зависят от природы и состава фаз. Между типом рентгенограммы и типом диаграммы состояния существует определенная связь. Особенно полезны рентгенографические данные для построения той части диаграмм, которые описывают равновесные процессы в твердом состоянии, где процессы установления равновесных состояний протекают очень медленно. [c.235]

    Весьма заманчивым является электрохимический способ со-осаждения гидроокисей, основанный на анодном растворении металлов [84—98]. Анализ равновесных электрохимических диаграмм электродный потенциал — pH раствора для систем типа Ме—Н2О [71] показал принципиальную возможность одновременного образования гидроокисей железа и других металлов. Электрохимический метод получения ферритовых порошков имеет несомненное преимущество перед, обычным методом соосаждения гидроокисей — он позволяет периодический процесс осаждения сделать по существу непрерывным, так как при электролизе происходит саморегенерация осадителя [90—99]. Изменения, происходящие в системе, можно выразить уравнением [c.14]

    Прямой метод определения а бинарной смеси по анализу состава жидкости и пара широко используется для различного рода смесей органических веществ. При большом отличии этого коэффициента от единицы а определяется с достаточной точностью. Существует много различного рода приборов [1—6], где испарение до равновесного состава пара осуществляется как со спокойным, так и с бурным движением парожидкостного потока. Для изотопов этот метод еще не применялся, так как в этом случае вследствие лишь небольшого отклонения коэффициента относительной летучести от единицы требуется применение точных методов анализа. [c.223]


    К сожалению, многие методы анализа основаны на взаимодействии определяемых продуктов с некоторыми другими веществами, а это нарушает равновесное состояние. Существуют, однако, методы, при помощи которых по крайней мере концентрации отдельных продуктов могут быть определены непосредственно без нарушения равновесия. [c.36]

    Существуют, однако, различия в методах экспериментального исследования, так как растворимость газов определяют по количеству поглощенного газа, а при определении растворимости жидкости требуется анализ равновесного раствора, что представляет собой очень непростую экспериментальную задачу. Крайне низкие концентрации и химическая инертность углеводородов предельного ряда делают неприменимыми большинство аналитических методов. Мощным инструментом определения растворимости стала газовая хроматография. В книге [27] подробно рассмотрены теоретические и экспериментальные аспекты таких исследований. [c.25]

    Своеобразный характер равновесной линии, приближающейся к оси абсцисс в области низких концентраций, объясняется наличием в водных растворах примесей, нерастворимых в дихлорэтане, но определяемых существующим методом анализа одновременно с кофеином в маточном растворе. Более подробно результаты этой работы освещены в литературе [8]. [c.267]

    Существуют различные способы расчета равновесного состава, многие из них реализованы в виде алгоритмов на ЭВМ. В общем случае ценность результатов таких расчетов для спектрального анализа заключается в том, что становится возможным выбор той формы, в которой интересующий нас элемент содержится в наибольших количествах при данных условиях получения высокотемпературного пара. В атомно-спектральных методах стараются подбирать такие условия, чтобы максимальная концентрация определяемого элемента находилась в виде атомов. [c.33]

    Варианты, основанные на однократной газовой экстракции, из всех, используемых в ПФА, в силу простоты технического оформления анализа применяются чаще других. К этим методам относятся абсолютная градуировка (или внешний стандарт) и внутренний стандарт. Существует два принципиально различных варианта абсолютной градуировки. Первый связывает площадь или высоту пика на хроматограмме, полученную в результате дозирования в хроматограф равновесного газа, с концентрацией вещества в анализируемом образце, т. е. So ( l), а второй — площадь пика с концентрацией вещества в равновесном газе — Sq ( q) [c.233]

    По мнению М. В. Островского [114], на поверхности раздела фаз существуют участки с равновесным и неравновесным поверхностным натяжением , а разность между последними является движущей силой, поддерживающей существование конвективных ячеек. Положение о существовании участков поверхности, где отсутствует равновесие между фазами, весьма спорно. Возможно, для некоторых физико-химических систем поверхностное сопротивление играет определенную роль. Анализ предложенного им метода определения поверхностной концентрации показал, что исходные положения метода не правильны, в результате чего получен противоречащий опытным данным результат соотношение коэффициентов массоотдачи для каждой из фаз определяется только соотношением объемов фаз и никоим образом не зависит от гидродинамических условий. Причина ошибки заключается в следующем. При рассмотрении нестационарного процесса массопередачи не учитывается, что скорость изменения концентрации в пограничном слое намного больше скорости изменения концентрации в объеме. [c.96]

    Т) этой и двух последующих главах рассмотрены равновесие адсорбции и кинетика элементарных гетерогенных каталитических реакций. Факторы, определяющие закономерности адсорбции и гетерогенного катализа, весьма разнообразны и часто с трудом поддаются учету. Среди них решающими являются число мест, которые занимает адсорбированная частица на поверхности конфигурация активированных комплексов неоднородность поверхности катализатора взаимное влияние адсорбированных частиц и коллективное взаимодействие адсорбированных частиц с поверхностью. При анализе равновесия применены методы статистической физики. При обсуждении кинетики использована теория абсолютных скоростей реакций [32], которая несмотря на не вполне последовательный характер исходных положений дает возможность правильно (как качественно, так зачастую и количественно) описать кинетические закономерности для подавляющей части химических превращений. Кроме этих строгих методов, для характеристики эффектов взаимодействия применена также полуэмпирическая модель. Теория абсолютных скоростей есть но существу равновесная теория, поэтому удобно исследовать равновесие и кинетику совместно. Второй довод в пользу такого рассмотрения заключается в том, что тип адсорбции частиц и активированных комплексов определяет и адсорбционные изотермы, и кинетические закономерности. [c.53]


    Существует множество наблюдений, показывающих, что плавление сополимеров на самом деле представляет собой диффузный процесс, причем кристалличность исчезает в очень щирокой температурной области. В дополнение к этому также известно, что достичь высокого уровня кристалличности в сополимерах значительно труднее, чем в гомополимерах. Таким образом, главные теоретические представления подтверждаются экспериментально. Но так как нерегулярности могут вводиться в полимер и без изменения химической природы мономерного звена, диффузный характер плавления многих гомополимеров (если судить по их составу, а не структуре) не всегда связывается с принципиально сополимерным характером таких систем. Следовательно, легко сделать ошибочный вывод, о том, что плавление гомополимеров также носит диффузный характер. С другой стороны, теория ясно демонстрирует, что детальный анализ процесса плавления в условиях, близких к равновесным, дает очень чувствительный метод выявления нерегулярностей цепи в кристаллизующемся полимере. [c.90]

    Электрохимические методы анализа. Ряд титриметриче-ских методов анализа с электрохимическим определением точки эквивалентности описан в предыдущем разделе. Кроме этого существует большая группа методов, в которых аналитический сигнал обеспечивается протеканием электрохимического процесса кулонометрия - измерение количества электричества, по тенциометрия - измерение равновесных разностей потенциалов, вольтамперометрия - измерение силы тока в зависимости от потенциала электрода. [c.456]

    Прежде чем приступить к описанию метода ансамблей Гиббса, который оказался весьма плодотворным в равновесной статистической механике, обсудим вопрос о природе сил, действую-Ш.ИХ между ионами. Кроме обычного упражнения, которое показывает, как из квантовомеханической теории вытекает куло-новское взаимодействие между ионами, здесь содержится материал, поучительный с точки зрения анализа природы взаимодействий других типов, представляющих интерес в связи с собственно химическими различиями между ионами разных элементов. Естественным приложением этого исследования является выяснение вопроса о том, существуют ли в расплаве комплексные ионы и какова их природа. К сожалению, характер и объем обзора заставляют нас ограничиться лишь беглым упоминанием основ современной структурной неорганической химии и ее роли в предсказании свойств полиатомных веществ, присутствующих в расплавах. Наряду с этим необходимо подчеркнуть, что для обсуждения основных диэлектрических свойств расплавленных солей потребуются ионные поляризуемости, которые могут быть вычислены квантово-механическим способом. [c.78]

    КОНФИГУРАЦИЯ РАВНОВЕСНАЯ, расположение атомных ядер молекулы (или радикала, иона) в пространстве, соответствующее минимуму ее потенц. энергии. К. р. двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания К. р. многоатомных молекул необходимо исппльловат] такие параметры, как длины связей, валентные углы, а также двугранные углы (см. Номенклатура стереохимическая). К. р. молекулы зависит от ее электронного состояния. Так, в оси. состоянии молекула ацетилена имеет линейную конфигурацию, в возбужденном — трансоидную. Параметры молекулы (или ее геометрию) определяют методами рентгеновского структурного анализа, газовой электронографии, микроволновой спектроскопии, нейтронографии и др., а в случае простых молекул также рассчитывают квантовомех. методами. КОНФОРМАЦИИ молекул, различные пространств, формы молекулы, возникающие при изменении относит, ориентации отд. ее частей в результате виутр. вращения атомов или групп атомов вокруг простых ( вя 1еп, изгиба связей и др. При этом стереохим. конфигурация молекулы остается неизменной. Каждой К. соответствует определ. энергия. Так, для молекулы зтана можно представить существование двух максимально ра )личающихся по энергии К.— 1аслоненной (ф-ла la), для к-рой диэдральный угол Ф (см. Номенклатура стереохимическая) имеет значения О, 2, 4, и. заторможенной, или шахматной ([б), с ф = 1, 3, 3. Первой из них соответствует максимум энергии, второй — минимум. Поэтому молекулы этана существуют практически только в заторможенной К. [c.274]

    Для полимеров характерно одновременное протекание множества релаксационных процессов с различными скоростями, т. е. с разными временами релаксации. Это вытекает из подробного анализа эксперимента. Так, из рис. 5.9 следует, что частотная зависимость деформации сохраняется при достаточно высоких температурах, тогда как она должна была бы отсутствовать у системы с одним временем релаксации (см. рис. 5.8). Для пространственных полимеров при повышенных температурах ни при одной частоте не наблюдается равновесной высокоэластической деформации, т. е. отставание деформации от напряжения сохраняется. Имеются и другие экспериментальные данные, свидетельствующие о наличии спектра времен релаксации, и существуют методы их оценки. [c.150]

    В первых работах конца XIX — начала XX в., связанных с физико-химическими исследованиями двухкомпонентных систем, вопросы состава пара практически не затрагивались. Объясняется это несколькими обстоятельствами. Во-первых, изучались водно-солевые системы, в которых давление насыщенного нара одного Iiз компонентов намного превышало давление другого. В таком случае состав пара определен однозначно. Во-вторых, преобладала точка зрения, что в газовой фазе существуют лишь молекулы компонентов. Отсюда основной метод исследования состава пара заключался в отборе газовой фазы из равновесной смеси и в анализе на содержание компонентов. [c.159]

    До появления физико-химического анализа химики изучали только отдельные изолированные друг от друга вещества и их свойства. Существовал обычный так называемый препаративный путь исследования. В отличие от такого старого метода исследования физико-химический анализ дает возможность изучить свойства полной равновесной системы, состоящей из определенного числа компонентов. [c.10]

    Независимо от степени развития отдельных методов физикохимического анализа комплексное изучение равновесных систем несколькими методами дало исключительно ценные результаты. На основании данных такого эксперимента можно утверждать, что между многими отдельными группами свойств, например между температурой Т, упругостью пара р и электродвижущей силой тс, существует внутренняя связь, которая обусловливает общность геометрического строения диаграмм состав — свойство (Г, р, тс) и облегчает их сравнительное изучение. [c.12]

    Следует отметить, что исследование сложных равновесных систем с большим числом различных химических соединений получило за последние десятилетия очень широкое распространение как в технике, так и в практике научных исследований. Так, химические процессы при высоких температурах приводят обычно к равновесным состояниям, характеризующимся наличием нескольких фаз и сложным составом газовой фазы, что связано с сильной диссоциацией продуктов, стабильных при обычных температурах. Химические процессы в растворах, особенно при образовании различных комплексных соединений, также приводят к весьма сложным равновесным составам, расчет которых имеет первостепенное значение во многих задачах физической и аналитической химии. Потребности практики привели к интенсивной разработке методов расчета, часть из которых будет рассмотрена в этой главе. Мы ограничимся изучением равновесий в замкнутых системах, т, е. не обменивающихся веществом с окружающей средой. По существу теми же приемами проводится анализ и частично замкнутых систем, в которых содержание хотя бы одного химического элемента постоянно. Например, если нет необходимости знать количественный состав конденсированной фазы, то газовую фазу при определенных условиях можно рассматривать как частично-замкнутую систему, если содержание хотя бы одного элемента в ней постоянно, т. е. не зависит от внешних условий. [c.189]

    Первые две подсистемы отличаются друг от друга используемыми методами анализа равновесной паровой фазы. Если в первой подсистеме используется любой метод анализа, а база калибровочных зависимостей предусмотрена для рефрактометрии, то во второй - используется только диэлектрометрия и база данных существует лишь для зависимостей состава от емкостной характеристики датчика. Наиболее существенное отличие - безотборность анализа паровой фазы во второй подсистеме. [c.110]

    Потенциомерические методы анализа имеют ряд преимуществ. Они очень чувствительны, позволяют проводить измерения в мутных и окрашенных растворах, вязких пастах. Поскольку равновесное значение потенциала устанавливается быстро, то потенциометрические измерения не требуют значительных затрат времени. Существуют модификации потенциометрического определения, позволяющие проводить анализ в пробах объемом до десятых долей миллиметра, что особенно важно в биологических исследованиях. [c.264]

    Хотя и следует ожидать, что дальнейшее развитие метода ударных труб для измереш й абсолютной интеисивности приведет к пересмотру приведенных нами численных данных, маловероятно, что будут развиты новые методы анализа для описания равновесных свойств нагретого воздуха. С другой стороны, очевидно, расчеты, предполагающие наличие равновесия, вообще не применимы к газам, в которых происходят релаксационные процессы (например, пламена, фронты ударных волн). В этой связи интересно отметить, что в работе [22] нриведен и предварительные данные [26] отпосительпо излучепия непосредственно за фронтом ударной волны при мал ых плотностях, которые указывают на наличие свечения повышенной интенсивиости, связанного с чрезвычайно высокими локальными температурами, существующими до установления химического равновесия. [c.383]

    В работе предложена методическая схема и сконструирована оригинальная лабораторная установка для анализа равновесного пара летучих компонентов нефтепродуктов совместно газохроматографическим и ИК-спектрометрическим методами, предусматривающая отдувку летучих компонентов сухим воздухом без вакуу-мирования в замкнутой циркуляционной системе. Используемый в предлагаемой установке вариант газовой экстракции предусматривает постоянную циркуляцию паров анализируемых веществ в замкнутом контуре, поэтому его можно назвать циркуляционным. Он сочетает в себе элементы статического и динамического парофазного анализа. Трудности в выборе калибровочных коэффициентов для количественных расчетов, существующие в обоих упомянутых вариантах газовой экстракции, станов5ггся здесь еще более охцутимыми. Поэтому в настоящей работе все необходимые для отработки методики зависимости перераспределения компонентов в гетерогенной системе устанавливались экспериментальным путем. [c.135]

    В то же время теория процессов горения до настоящего времени развита недостаточно полно, отсутствуют методы расчета должной точности. В результате возникает необходимость длительной кропотливой опытной доводки почти всех устройств и агрегатов, в которых протекает процесс горения. Можно назвать причины существующего положения. Во-первых, главный участник процесса горения — топливо — является комплексом природных органических веществ очень сложного химического строения. Правда, при нагреве и взаимодействии с окислителем происходит распад этих комплексов на простые соединения и элементы, но при анализе процесса горения невозможно обойтись без учета поведения горючего в его исходной форме и промежуточных состояниях. А это крайне, затрудняет изучение процесса. Во-вторых, в процессе горения, так же, как и в других химических пронессах, обязательны два этапа создание молекулярного контакта между горючим и окислителем (физический этап) и само взаимодействие молекул с образованием продуктов реакции (химический этап). При этом второй этап протекает только у молекул, находящихся в особом энергетически или кинетически возбужденном состоянии. Возбуждаются же молекулы в результате начавшегося процесса. Поэтому при изучении процесса горения нельзя рассматривать участвующие в нем вещества как однородную массу одинаковых средних молекул. Даже при рассмотрении простейших реакций горения необходимо учитывать различия между отдельными молекулами, составляющими сложную полисистему. В-третьих, горение принципиально не является равновесным процессом. При горении обязательно возникают неоднородности состояния молекул, их концентраций, неравномерности полей температур и скоростей потоков. Из этого вытекает необходимость одновременного решения нестационарных задач массо- и тепло-переноса и химической кинетики в движущихся потоках, причем наиболее часто при турбулентности, вызванной самим процессом горения. [c.4]

    Простое определение молекулярной структуры многоатомных молекул. Понятие молекулярной структуры лежит в основе современного учения о строении молеку.п. Молекулярная структура определяется равновесной конфигурацией пространственного расположения ядер атомов, образующих молекулу. Эта конфигурация сложной молекулы в принципе может быть рассчитана по методу МО. Существует ряд приближенных моделей и методов, которые используются для систематического анализа накопленных экспериментальных данных и оценки геол1етрических конфигураций молекул. В определенных пределах они часто позволяют ие только дать разумное объяснение наб.лю-даемых геометрических конфигураций молеку.п. но на основе установленных закономерностей и корреляций правильно предсказывать геометрию молеку.п без длительных и трудоемких квантовохимическнх расчетов. Одним из таких [c.133]

    Трудности, возникающие на стадии формализации, связаны с определением, во-первых, скорости производства энтропии в процессе релаксации и, во-вторых, времени перехода из исходного неравновесного состояния в равновесное. Дело в том, что в физических системах определение величин иногда производится довольно простым методом. Так, например, время релаксации физической системы может быть определено [57] в виде T=d/V, где d - средняя длина свободного пробега, V - средняя скорость. Для реальных систем величина т столь мала, что ею можно пренебречь. Поэтому анализ физических систем может быть ограничен анализом лищь старого и нового равновесного состояний, т. е. речь будет идти, по существу, не о термодинамической, а о термостатической системе, где задано только положительное направление изменения энтропии. [c.105]

    Согласно стратегии системного анализа, в К. вначале анализируется гидродинамич. часть общего технол. оператора-основа будущей модели. Эта часть оператора характеризует поведение т. наз. холодного объекта (напр., хим. реактора), т.е. объекта, в к-ром отсутствуют физ.-хим. превращения. Вначале анализируется структура потоков в объекте и ее влияние на процессы переноса и перемешивания компонентов потока. Изучаемые иа данном этапе закономерности, как правило, линейны и описываются линейными дифференц. ур-ниями. Результаты анализа представляются обычно в виде системы дифференц. ур-ний с найденными значениями их параметров. Иногда для описания процессов не удается использовать мат. аппарат детерминированных (изменяющихся непрерывно по вполне определенным законам) ур-ний. В таких случаях применяют статистико-веро-ятностное (стохастич.) описание в виде нек-рых ф-ций распределения св-в процесса (ф-ции распределения частиц в-в по размерам, плотности и др., напр, при псевдоожижеяии ф-ции распределения элементов потока по временам пребывания в аппаратах при диффузии или теплопереносе и т. д. см. также Трассёра метод). Далее анализируется кинетика хим. р-ций и фазовых переходов в условиях, близких к существующим условиям эксплуатации объекта, а также скорости массо- и теплопередачи и составляются соответствующие элементарные функциональные операторы. Кинетич. закономерности хим. превращений, массообмена и фазовых переходов обычно служат осн. источниками нелинейности (р-ции порядка, отличного от нуля и единицы, нелинейные равновесные соотношения, экспоненциальная зависимость кннетич. констант от т-ры и т. п.) в ур-ниях мат описания объекта моделирования. [c.378]

    К методам приведения относится и так называемый -метод де Бура [167], получивший наибольшее распространение. Этот метод, как будет показано далее, представляет особый интерес при исследовании адсорбции из водных растворов, и к его более детальному анализу в этой связи мы еще должны будем вернуться. Для определения удельной поверхности адсорбентов по этому методу также пользуются стандартным адсорбентом с известной поверхностью. При исследовании адсорбции на углеродных материалах в качестве стандарта выбирают непористую сажу. Изотермы адсорбции стандартного адсорбата (азота) на обоих адсорбентах выражают в виде зависимости объема адсорбированного вещества 1>а от равновесного относительного давления. При этом плотность адсорбированного вещества принимают равной плотности его в жидком состоянии при той же температуре (как это впервые было допущено Поляни). Поскольку поверхность непорпстого стандартного адсорбента известна, то из величин адсорбированного объема вещества можно рассчитать среднюю статистическую толщину адсорбционного слоя I и представить ее как функцию plps В -методе допускается, что на адсорбенте с неизвестной удельной поверхностью одинаковой химической природы средняя статистическая толщина адсорбционного слоя при равных р р такова же, как и на адсорбенте с известной поверхностью. Это условие справедливо при приблизительном равенстве энергетических характеристик адсорбентов. Для всех таких адсорбентов должна существовать единая кривая = / (р/р.ч), что и подтвернадается большим количеством экспериментальных измерений [141, 142]. [c.71]

    Для многих веществ, адсорбированных преимущественно на пористых материалах, Надь и Шай приводят толщину адсорбционного слоя, примерно равную диаметру молекулы. Корнфорд, Киплинг и Райт [188] тщательно исследовали адсорбцию ряда бинарных систем, далеких от идеальности, на непористых адсорбентах (саже сфзрон-6 и графитированной саже графой) с точно определенной поверхностью и обнаружили во всех случаях, что толщина адсорбционного слоя примерно равна диаметру молекулы (от 0,98 до 1,13 d). Термодинамический анализ условий применения метода Надя и Шая, произведенный Корнфордом, Киплингом и Райтом, показал, что постоянство n и n с измене-ем г в идеальных системах возможно только в исключительных случаях однако в системах, далеких от идеальности (к которым относятся большинство растворов твердых веществ и разнородных по строению жидких смесей, должна существовать область равновесных концентраций, в которой величины п и изменяются настолько незначительно, что с достаточным приближением этими изменениями практически можно пренебречь. [c.84]

    Робертсон [31] дал подробный анализ результатов ис-следованпя надмолекулярной организации полимеров, находящихся в аморфном состоянии, методами измерения плотности, дифракции рентгеновских лучей и нейтронов под малыми и большими углами, электронной микроскопии и электронографии, изучения термоупругости, двойного лучепреломления под нагрузкой, рэлеев-ского рассеяния и т. д. На основании такого анализа был сделан вывод о том, что в аморфных полимерах существует локальная упорядоченность, которая приводит к сохранению анизотропии на расстоянии порядка нескольких десятков ангстрем. Результаты малоуглового рассеяния рентгеновских лучей показывают, что упорядоченные области не имеют четких границ. Робертсон полагает, что отсутствуют экспериментальные доказательства, подтверждающие наличие в аморфных полимерах доменов размером около 100 А с регулярными равновесными структурами. По его мнению, доменные структуры, которые наблюдались с помощью электронных микроскопов и малоуглового рассеяния рентгеновских лучей, обусловлены существованием загрязнений или неравновесных структур. [c.67]

    С общих физических позиций более конкретным является совместное рассмотрение концентрационных полей внутри ка-пилляро-пористого тела и в потоке, прилегающем к поверхности материала. На самой поверхности тела при таком совместном анализе формулируются усложненные граничные условия четвертого рода, согласно которым должны существовать равновесное соотношение концентраций в обеих фазах на границе их контакта и равенство потоков компонента в пределах той и другой фазы по обе стороны от границы. Такого рода сопряженные задачи рассматриваются в теории теплообмена [4]. Однако трудности теоретического анализа задач тепло- и массообмена в такой общей постановке настолько значительны, что в практике технологических расчетов результаты анализа сопряженных задач использованы быть не могут, поэтому основой теоретических методов для задач тепло- и массообмена в настоящее время являются аналитические решения дифференциального уравнения переноса внутри твердых тел с граничными условиями третьего рода на наружной поверхности. При этом коэффициент массообмена р должен быть известен либо из независимых теоретических решений задачи внешнего массообмена, либо его значение рассчитывается по соотношениям, обобщающим соответствующие экспериментальные данные. [c.52]

    Другие задачи, которые являются обратными по отношению к указанным выше,— это извлечение сведений о термодинамических свойствах веществ из экспериментальных данных об условиях равновесия фаз. Их можно рассматривать и как разновидность косвенных экснеримептальных методов изучения термодинамических свойств. Подобные задачи встречаются на практике очень часто и в различных вариантах. Если постановка прямых термодинамических исследований но каким-либо причинам затруднена, то фазовые равновесия могут стать основным источником информации о равновесных функциях системы. Такая ситуация возникает нередко, например, при анализе методами термодинамики некоторых геологических и геохимических процессов, когда оказывается невозможным экспериментально смоделировать условия, существующие в недрах Земли. [c.4]

    Анализ деформационных свойств показал, что прочность существующих в вулканизатах сцеплений характеризуется весьма широким спектром сил—от слабых ван-дер-ваальсовых до химических в этой связи термин постоянные относится к тем сцеплениям, прочность которых достаточна по крайней мере для того, чтобы противостоять действию растворителя, применяемого при измерении равновесного набухания. Связи, образованные слабыми физическими силами, по-видимому, не выдерживают интенсивной экстракции растворителем и поэтому выпадают из числа измеряемых при помощи метода набухания. В ходе дальнейшего изложения мы еще вернемся к вопросу о природе измеряемых связей. [c.143]

    Бюрги и Дуниц [60, 61] нашли совершенно новый способ определения путей реакции. Идея этого метода так называемых структурных корреляций состоит в поиске для данного реагирующего фрагмента всех кристаллических структур, в которых присутствует этот фрагмент или в равновесной форме, или в деформированной форме, причем деформация соответствует предполагаемому пути к продукту. Особенно удивительно, что действительно существует достаточное число структур, в которых по данным рентгеноструктурного анализа может наблюдаться деформированная форма реагента. Геометрия этих структур изображается вместе с формой [c.202]

    Во время написания этой книги (1961 г.) конформационный анализ колец, больших чем шестичленное, еще только зарождался, но он интенсивно развивается. Используются три метода физические измерения (рентгеноструктурный анализ [10], инфракрасная спектроскопия [11], измерение дипольных моментов [12]), вычисления с применением вращательных потенциальных функций [13—16] и химические методы (кинетические и равновесные) [17]. Инфракрасные полосы замещенных циклоалканов этого типа в отличие от полос замещенных циклогексанов (гл. 8) мало зависят от температуры [И], что указывает либо на существование этих молекул в фиксированной конформации, либо на примерно одинаковые энергии нескольких конформаций [17]. Вычисление действительной формы колец, больших чем шестичленные [13, 14], осложнено двумя взаимосвязанными факторами в таких кольцах могут существовать вандерваальсовы отталкивания между атомами водорода через кольцо во многих возможных конформациях (это легко можно видеть на масштабных моделях) в результате вандерваальсовых и крутильных взаимодействий часто в таких циклах энергетически выгоднее де рмация валентных углов с устранением этих взаимодействий. Энергия, требуемая для деформации валентных углов, очень мала принимая силовую константу углерод-углеродной связи равной эрг-радиан -моль , имеем = 0,0175 л , где Е — энергия угловой деформации в килокалориях на 1 моль, а л — деформация угла в градусах [16]. [c.245]

    Гетерозиготный эффект новых мутаций. Уоллес (1957) предложил самое смелое и оригинальное решение нашей проблемы — путем характеристики интенсивности и уровня естественного отбора в типичном локусе. Как я уже указывал, трудность состоит в том, чтобы уловить влияние замещения в одном локусе, поскольку не существует метода, дающего возможность проследить за расщеплением по одному локусу при незначительных эффектах аллелей. Уоллес предложил изменить порядок экспериментального анализа, начав с создания полностью гомозиготной линии и индуцировав несколько случайных мутаций в одном из двух гомозиготных геномов. Затем можно сравнить между собой исходную гомозиготу, геном, гомозиготный по новым мутациям, и гетерозиготу между ними. Смелость этого предложения заключается в следующем. Во-первых, число индуцированных мутаций должно быть очень невелико, чтобы взаимодействие между локусами не играло существенной роли. Поэтому ожидаемый эффект должен быть небольшим. Во-вторых, этот метод служит односторонним тестом для гетерозиса, и отрицательные результаты не будут иметь смысла. Если бы гетерозигота по новой мутации в среднем превосходила и мутантную, и немутантную гомозиготы, то гетерозис был бы самым обычным явлением в природных равновесных популяциях. Следует помнить, что естественный отбор будет действовать как сито и насыщать популяцию гетерозисными мутациями, если они возникают. При отсутствии гетерозиса у гетерозигот по новым мутациям ничего доказать не удастся, так как может оказаться, что гетерозисные мутации составляют меньшинство новых мутаций и, таким образом, их эффекты затеряются в среднем. Но в равновесной природной популяции гетерозиготы могут преобладать вследствие насыщения, создаваемого естественным отбором. Уоллес надеялся в своих начальных предпосылках, что, даже если в среднем новые мутации не будут иметь преимущества в гетерозиготном состоянии, он сможет с помощью соответствующего статистического анализа вычислить долю индуцированных гетерозисных мутаций. Принимая во внимание множество допущений, необходимых при подобных анализах, и явную ограниченность их возможностей, при такой оценке вряд ли удастся получить достаточно определенные результаты. [c.93]


Смотреть страницы где упоминается термин Метод анализа равновесно существующих фаз: [c.168]    [c.238]    [c.114]    [c.158]    [c.479]    [c.161]    [c.53]    [c.26]   
Техника физико-химических исследований при высоких давлениях (1951) -- [ c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Методы анализа равновесные

Равновесный метод



© 2025 chem21.info Реклама на сайте