Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Геометрические характеристики плоских сечений

    П1-7. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ [c.353]

    Геометрические характеристики плоских сечений. Кручение. Построение эпюр. Определение деформаций при крз чении. [c.251]

    Основная несущая конструкция каркаса одноэтажных зданий насосных и компрессорных станций—плоская поперечная рама. К расчетным ее элементам относятся колонны и ригель. В зависимости от конструкции узла сопряжения колонн с ригелем возможны две принципиальные схемы расчета поперечной рамы при шарнирном опирании ригеля на колонны и при абсолютно жестком соединении этих элементов. Определение основных геометрических характеристик поперечных сечений колонн и ригеля при заданном материале конструкции проводят при самых неблагоприятных сочетаниях нагрузок, действующих на Поперечную раму постоянные — вес элементов покрытия здания, вес ригеля временные — снеговая, ветровая и крановая нагрузки (от мостовых кранов) вертикальная (давление колес крановой тележки) и горизонтальная поперечная (от торможения грузовой тележки Т). [c.94]


    Преобразование первоначального профиля скорости в заданный неравномерный может быть достигнуто с помощью не только неоднородных плоских решеток, т. е. плоских решеток переменного по сечению сопротивления, но и пространственных решеток с различной кривизной поверхности. При решении этой задачи предполагается, что малы не только отклонения (возмущения) скоростей от равномерного их распределения по сечению, но и степень неоднородности сопротивления решетки и кривизна ее поверхности, т. е. гидравлические и геометрические характеристики изучаемой решетки мало отличаются от этих характеристик для однородной и плоской решетки. Это допущение позволяет линеаризовать полученные уравнения и основной результат представить в виде линейной связи между характеристиками потока (профилями скорости) до решетки и за ней и характеристиками решетки. [c.121]

    Диаграмма направленности является важной характеристикой звукового поля, определяющей геометрические границы поля, его протяженность и распределение в нем ультразвуковой энергии. Если пьезоэлемент имеет форму плоской круглой пластины, размеры которой малы по сравнению с длиной волны, то он подобен точечному источнику и излучаемое им звуковое поле имеет вид сферы. При увеличении поперечных размеров пьезоэлемента (при той же длине волны) пространственный угол, охватываемый звуковым полем, уменьшается и звуковое поле приобретает форму лепестка, ось которого направлена перпендикулярно излучающей поверхности. Чем больше диаметр пьезоэлемента, тем уже диаграмма направленности. Как было отмечено, вблизи излучателя поле имеет приблизительно цилиндрическую форму, а начиная с некоторого расстояния Го и дальше поле приобретает конусообразную форму. На рис. 82 показаны схемы изменения звукового поля в зависимости от частоты / излучения и диаметра О пьезоэлемента. Как видно, с увеличением диаметра О и частоты / увеличивается протяженность ближней зоны Гд и уменьшается угол 0 расхождения пучка лучей УЗК, т. е. улучшается направленность излучения. Но в ближней зоне звуковое поле неоднородно, амплитуда поля и, следовательно, интенсивность звука распределены неравномерно и осциллируют на этом участке как по длине, так и по сечению пучка. Если при контроле изделия дефект будет находиться на участке ближней зоны, то от него могут [c.171]

    В основу метода положена концепция замещения реальных компонентов вакуумной системы некоторыми эквивалентами простейшей формы, имеющими интегральные характеристики, отражающие газокинетические свойства данного компонента. Обычно в качестве эквивалентов используют плоские поверхности, являющиеся фактически граничными сечениями заменяемых элементов. Нужно отметить, что часто используется последовательное замещение с уменьшением уровня детализации. Например, сложный элемент насоса заменяется эквивалентной поверхностью, имеющей газокинетические характеристики данного элемента. После этого анализируются характеристики насоса в подобной упрощенной конфигурации. Далее сам насос может быть заменен эквивалентной поверхностью, если анализируемая вакуумная система геометрически более сложная и т. д. Следовательно, возможно проведение последовательных замещений с уменьшением уровня детализации. Такой подход не влечет существенного снижения достоверности полученных результатов, если речь идет об интегральных характеристиках системы. Если же речь идет о получении полей распределенных дифференциальных характеристик, то применение подобной схемы нежелательно, поскольку обычно эквивалентная поверхность отражает лишь интегральные характеристики замещенного элемента, а ее дифференциальные параметры принимаются так же, как у всех простых поверхностей, составляющих систему. [c.78]



Смотреть главы в:

Механика химических производств Изд3 -> Геометрические характеристики плоских сечений




ПОИСК





Смотрите так же термины и статьи:

Сечение

Сеченов

Характеристики геометрические



© 2024 chem21.info Реклама на сайте