Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адгезия неорганическим волокна

    АДГЕЗИЯ ПОЛИМЕРОВ К ВОЛОКНАМ НЕОРГАНИЧЕСКОЙ ПРИРОДЫ [c.326]

    Важнейнпю неорганические волокн а— стеклянное и асбестовое. Ассортимент стеклянных волокон очень широк. Их вводят в реакто- и термопласты, иногда в сочетании с порошкообразными или с др. волокнистыми наполнителями (см. С теклопластики, Стекловолокниты). При введении стеклянного волокна повышаются физпко-химич. показатели, понижается коэфф. трения, улучшаются диэлектрич. свойства, тепло-, износо- п химстойкость материала. Недостатки стекловолокна как наполнителя — низкая адгезия к нек-рым связую1Щ1м, заметное снижение прочности во влажных средах, а ири наполнении термопластов — анизотропия свойств получаемого изделия вследствие ориентационных эффектов при переработке наполненного материала. [c.175]


    Рассмотрим вначале полимерную матрицу в ненагруженном однонаправленном композите. Такой композит обычно представляют квадратичной или гексагональной моделью. Минимальное объемное содержание полимера в плотноупакованной квадратичной структуре — около 21%, в гексагональной—13%. Армирующие волокна можно считать совершенно жесткими, так как модуль упругости применяемых неорганических волокон значительно больше модуля упругости полимера. Как уже указывалось выше (см. гл. 3 и 4), при отверждении эпоксидного полимера в ходе изготовления пластика, которое происходит обычно при повышенной температуре, объем полимера уменьшается вследствие его усадки, а вязкость быстро нарастает. До гелеобразования, пока полимер способен к течению, его объем может уменьшаться за счет уменьщения объема всей системы или образования пор. После гелеобразования течение полимера невозможно, и происходит деформация всей системы. Однако при этом деформация полимера ограничена волокнами, что приводит к появлению в полимере внутренних напряжений. Так как армированные пластики, как правило, содержат большое количество наполнителя, то можно считать, что он образует жесткий скелет, препятствующий деформации полимера, т. е. связующее подвергается всестороннему растяжению. Объемная деформация при этом может составлять несколько процентов (см. гл. 4). Таким образом, уже в ненагруженном состоянии эпоксидная матрица должна выдерживать значительные механические деформации без разрушения и нарушения адгезии на границе с волокном. Как показали микроскопические исследования [27—33], эпоксидные смолы значительно лучше других связующих выдерживают подобные условия. [c.209]

    Общей особенностью всех волокон, используемых в композитах, является их малый диаметр [2]. Главной причиной использования волокон малого диаметра является способность многих материалов проявлять в таком виде чрезвычайно высокую прочность, что связано с масштабным эффекто.м . Поэтому все современные армированные пластики независимо от их состава содержат волокна диаметром не более 0,1 мм. Кроме того, малый диаметр волокна необходим для получения достаточно большой боковой поверхности, на которой происходит передача нагрузки от сравнительно непрочной и нежесткой матрицы к волокну, так как при большом диаметре сил адгезии недостаточно для передачи нагрузки между волокпамп. Основные с зой-ства наиболее перспективных неорганических волокон приведены в табл. 8.4. Как видно из этой таблицы, стеклянные волокна обладают сравнительно небольшим модулем, в то время как остальные волокна можно считать высокомодульными. В настоящее время на практике применяют стеклянные, борные и углеродные волокна, причем последние обладают наибольшей удельной жесткостью вследствие высокой плотности. [c.213]


    Во втором издании книги (предыдущее издание выышо в 1969 г.) на обширном экспериментальном материале дан критический анализ современных представлений о природе адгезии развита единая концепция, раскрывающая механизм адгезии полимеров к субстратам различной природы — монолитным органическим и неорганическим материалам, волокнам, наполнителям. Рассмотрены различные методы определения прочности адгезионных соединений, а также исследования свойств адгезивов и субстратов. [c.2]


Смотреть страницы где упоминается термин Адгезия неорганическим волокна: [c.106]    [c.126]   
Основы адгезии полимеров (1974) -- [ c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезия



© 2024 chem21.info Реклама на сайте