Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адгезия природа

    Явления адгезии и смачивания широко распространены как в природе, так и в различных отраслях народного хозяйства. Склеивание материалов, нанесение лакокрасочных и неорганических покрытий, получение различных материалов на основе связующих и наполнителей (бетон, резина, стеклопластики и т. д.), сварка и паяние металлов, печатание, крашение — все эти процессы связаны с адгезией и смачиванием, которые в значительной степени определяют качество материалов и изделий. [c.64]


    Влияние природы взаимодействующих компонентов иногда выражают через коэффициенты поверхностного натяжения о на границах Т—Ж, Ж—Т, Т—Т, а также угол смачивания 9с, выражающий степень лиофильности. Смачивание твердой поверхности носителя жидкостью (раствором) происходит при всех методах пропитки. Условия смачивания [32] могут быть определены энергетическими соотношениями в системе, т. е. величинами свободной энергии на межфазных поверхностях и соотношением между силами адгезии и когезии [81]. [c.132]

    Как влияет природа твердого тела и л<идкости (межмолекулярное взаимодействие в них) на смачивание и адгезию  [c.31]

    Известно, что система модификаторов адгезии, состоящая из резорцина, уротропина и высокодисперсной гидроокиси кремния, обеспечивает высокую прочность связи эластомера с химическими волокнами. Влияние системы модификаторов на механические свойства резин зависит не только от природы волокон, но и от фактора их формы. Это объясняют следующим. Прочность композиции пропорциональна фактору формы волокон. Если волокна очень длинные, суммарная поверхность контакта их с резиновой смесью весьма велика. Таким образом, волокна, длина и фактор формы которых выше критической, оказывают усиливающее действие на эластомер. Таково поведение полиамидных волокон в композициях. Существуют различные способы изготовления эластомерных композиций, наполненных волокнами смешение волокон с эластомерами в виде твердой фазы, жидкого каучука, водной дисперсии или раствора эластомера в органическом растворителе. Однако в производстве резиновых технических изделий жидкие композиции не получили широкого распространения. В основном изготовление и переработку резиновых смесей, содержащих волокнистые наполнители, ведут на обычном оборудовании резиновой промышленности — на вальцах, в резиносмесителях и экструдерах. [c.181]

    Адгезия. Природа адгезии детально рассмотрена в ряде специальных работ [4]. Здесь ограничимся рассмотрением некоторых факторов, влияющих на адгезию напыленных покрытий. В исследовательской практике адгезия 7 99 [c.99]

    Для химмотологии определенный интерес представляет явление адгезии, возникающей при контакте твердых частиц с поверхностью металлов. В самом общем теоретическом аспекте адгезия есть результат межмолекулярного взаимодействия двух соприкасающихся разнородных твердых поверхностей. Она зависит от химической и физической природы этих поверхностей, их размера, а также от свойств среды [214, 215]. В жидкой среде адгезия частиц значительно меньше, чем в воздухе. [c.194]


    Между чисто механической теорией трения, связывающей сопротивление тангенциальному перемещению с зацеплением шероховатостей, и молекулярной теорией, по которой трение обусловлено взаимодействием атомов сближенных поверхностей (адгезией), существуют определенные противоречия. Они в значительной степени устраняются представлениями Крагельского о двойственной молекулярно-механической природе трения, согласно которой вследствие дискретности контакта на фактических малых площадях соприкосновения развиваются высокие давления, приводящие к сближению и взаимному внедрению контактирующих участков. При тангенциальном смещении происходят деформация и механические потери или даже разрушение микровыступов на срез. С одной стороны, это связано с механическим разрушением внедрившихся выступов, которые или срезаются, или оттесняются (упруго или пластически). С другой стороны, кроме преодоления механического сопротивления, связанного с перемещением выступа, необходимо преодолеть также и силы молекулярного взаимодействия между тесно сближенными элементами поверхностей. В настоящее время установлено, что на трение твердых тел влияют все свойства поверхностных слоев и любые их изменения, которые зачастую трудно контролируемы. [c.356]

    Если вместо воздуха взята вторая жидкость — битум, то происходящие явления, в сущности, не меняются, но смачивание становится избирательным и зависит от природы поверхности твердого тела. Практически для обеспечения хорошей смачиваемости поверхности материала битумом и последующей адгезии битума адсорбированную на поверхности воду удаляют высушиванием минерала при температуре около 150°С, При более низкой температуре смешения битума и минерала (например, при использовании жидких битумов) для обеспечения достаточной адгезии следует применять соответствующие добавки, влияющие на поверхностные взаимодействия. [c.24]

    Порозность плотной фазы псевдоожиженных газом систем, вполне определенная для данного материала и каждой скорости газа, может изменяться в диапазоне от 0,35 до 0,70 — в зависимости от химической природа, плотности, формы, гранулометрического состава и состояния поверхности твердых частиц i. При переходе от тяжелых сферических частиц к легким угловатым значения umf изменяются от 0,35 до 0,55 для последних материалов наблюдается дальнейшее увеличение порозности при возрастании скорости газа от Umf до значения, соот ветствующего образованию пузырей когда порозность Еть достигает 0,7. Это является следствием сложного воздействия на твердые частицы сил тяжести, трения газового потока, сцепления и адгезии [c.567]

    Межфазовое натяжение и адгезия. Существование поверхност предполагает наличие двух сред, например, жидкости и воздуха. Поверхностное натяжение зависит от природы этих двух сред. Ра- [c.59]

    Особый интерес вызывает влияние природы металла на процесс парафинизации. Систематические исследования, посвященные непосредственно выяснению этого вопроса, практически отсутствуют, имеющиеся отрывочные данные относятся, в основном, к различным сталям /41,43,44/. Более полно исследовано влияние поверхностных свойств металлов на процесс адгезии органических пленок. Этот исследовательский материал с определенным приближением можно использовать при анализе явлений, наблюдающихся при адгезии парафиновых частиц на поверхность металлов. [c.104]

    Фазовые переходы и связанные с ними критические явления являют собой яркие примеры единства и универсальности законов природы. Современная теория фазовых переходов является не только достоянием физики конденсированного состояния, Методы теории фазовых переходов все чаще применяются в различных областях естествознания, технических и даже в гуманитарных науках. Объединяют явления адгезии и фазовых переходов межфазные процессы массопереноса и межфазные взаимодействия. Особо велико значение теории фазовых переходов и адгезии для технологии получения композиционных и полимерных материалов с заданными свойствами. К сожалению, в большинстве образовательных и специальных курсов по физики и химии полимеров, а также теоретических основ технологии композиционных материа юв, волокон и полимеров, адгезии и фазовым переходам не уделяется должное внимание. Цель данного материала ознакомить учащихся и специалистов с основами теории. Поэтому в разделах 1 и 3 приведен обзор современных теорий. В части 2 и 4 приведены результаты, полученные авторами. [c.4]

    Каждая теория с присущими ей достоинствами и недостатками не является универсальной. Так, первая теория не объясняет прочного склеивания гладких поверхностей и не учитывает природу склеивающихся тел, вторая — не учитывает явлений электризации плоскостей адгезии, третья — не учитывает природу контактирующих тел, четвертая — не объясняет, например, высокую адгезию полимеров, имеющих одинаковое химическое строение. Очевидно, механизм адгезии более сложен и не укладывается и рамки одной теории. [c.24]

    Особо подчеркнем, что к наиболее важным преимуществам битумных эмульсий относятся их заметно меньшая по сравнению с вязкими и разжиженными битумами вязкость (при 20°С) и более высокая адгезионная способность к поверхностям различной структуры и природы (кислые и щелочные минералы, а также металл). Снижение вязкости позволяет повысить точность дозирования вяжущего и распределять его более тонкими слоями, что, в свою очередь, исключает вероятность потения слоев (выступления битума на поверхность из объема слоя) и приводит к сокращению расхода вяжущего. Улучшенная адгезия способствует созданию высокопрочных и долговечных дорожных конструкций. [c.8]


    В заключение заметим, что в 1990 году из перечня показателей свойств дорожных битумов, контролируемых ГОСТ 2245-90, выведен показатель сцепления битума с мрамором и песком. Это вызвано тем, что оценка адгезии битумов по эталонным образцам не только не позволяла объективно и с должной достоверностью прогнозировать прочность материалов дорожного покрытия, но и вводила в заблуждение потребителей насчет адгезионной способности вяжущего, т.к. соответствие сцепления битумов с мрамором требованиям стандарта по контрольным образцам ы 1 и 2 служило гарантией создания высокопрочных покрытий из минеральных материалов любой химической природы, что в свете приведенных в этой главе сведений не всегда соответствует действительности. [c.126]

    Эмульсии [1—5]. Эмульсии — системы из двух жидких фаз, одна из которых дисперсная, или прерывная, а другая фаза не- прерывная, называемая дисперсионной средой. Эмульсии распадаются на два класса. Первый класс — весьма разреженные эмульсии в виде мельчайших капелек одной жидкости, например масла, взвешенных в другой, например в воде. В стабилизации этих эмульсий главную роль играют электрические заряды на поверхности эмульгированной жидкости состояние и свойства поверхностных пленок оказывают меньшее влияние. Эмульсии этого класса приближаются к лиофобным коллоидным системам. Эмульсии второго класса более распространены. В них устойчивость определяется главным образом природой межфазной поверхностной пленки, отделяющей дисперсную фазу от дисперсионной среды. Эту пленку обычно образует третье вещество, отличающееся от обеих объемных фаз и легко растворимое в одной из них. Одна из главных функций этой пленки — понижение межфазного натяжения за счет увеличения адгезии между обеими фазами и, следовательно, уменьшение работы образования поверхности раздела при диспергировании. [c.78]

    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    Сила нормального давления приводит к деформации поверхностей в местах локальных контактов, при трении скольжения происходит разрушение (отрыв при сдвиге и деформация) этих контактов. Поэтому сила трения зависит не только от механических свойств выступов поверхности, но и от молекулярных сил прилипания. В результате, по Крагельскому, трение имеет двойственную молекулярно-механическую природу. Оно обусловлено механическими потерями при деформации поверхностных выступов (механическая составляющая) и потерями на преодоление межмолекулярных связей (адгезионная составляющая). При этом, по Дерягину, молекулярное взаимодействие обусловлено взаимным притяжением трущихся пар (адгезией) и взаимным внедрением элементов сжатия поверхностей. Следовательно, вопрос о сближении поверхностей и фактической площади их касания является весьма важным при рассмотрении трения и износа. [c.355]

    Необходимо подчеркнуть, что явления на уровне микрофакторов при фильтровании с закупориванием пор заметно сложнее соответствующих явлений при фильтровании с образованием осадка. Возникновение этой сложности обусловлено в основном перемещением в порах перегородки двухфазной системы жидкость — твердые частицы вместо перемещения однофазной жидкости в осадке и появлением лобового слоя, занимающего часть толщины перегородки, обращенной к разделяемой суспензии, и отсутствующего при образовании осадка. Перемещение двухфазной системы в порах сложной структуры сопровождается задерживанием твердых частиц в перегородке под действием сил различной природы, в частности гравитации, инерции, адгезии, механического торможения. Лобовой слой препятствует использованию остальной части толщины перегородки для аккумулирования твердых частиц. Физические модели перемещения двухфазной системы в порах и образования лобового слоя сложны и несовершенны, а математическое описание этих явлений в настоящее время по существу недостижимо. [c.114]

    Конструкционные материалы и покрытия на основе эпоксидных смол обладают исключительно высокими физико-химически-мн показателями и высокой химической стойкостью во многих агрессивных средах. Эпокспсмолы очень легко совмещаются с другими высокомолекулярными соединениями и, в зависимости от характера и природы модифицирующих веществ, обладают кнслотостойкостью, щелочестойкостью и теплостойкостью до 110—120° С. Основными ценными свойствами эпоксидных смол являются назиачительная их усадка прн отверждении и высокая адгезия к различным материалам (металлу, бетону, керамике [c.407]

    Механические свойства. Между частицами сыпучего материала существуют силы взаимодействия различной природы. Эти силы объединяют термином — тутогезия- . Понятие аутогезии охватывает все виды II формы связи между частицами независимо от числа и свойств взаимодействующих частиц, природы сил, обусловливающих это взаимодействие, причин и условий их возникновения. Помимо этого основного термина в технической литературе применяют и другие термины адгезия, когезия, агломерация, агрегация, слеживаемость. [c.151]

    Введение в пресскомпозицию поберхностно-ак-тивных добавок (жирных кислот или их солей) существенно изменяет адгезию олигомера, а следовательно, и физико-механические свойства фенопластов. Ряд свойств прессовочных материалов (водостойкость, химическая стойкость, диэлектрические свойства, твердость, теплостойкость) определяются природой наполнителя. Так, при введении в пресс-порошки с древесной мукой минерального наполнителя повышаются плотность, твердость, жесткость, теплопроводность и водостойкость материала. Фенолоальдегидные пресспорошки устойчивы к действию слабых кислот и органических растворителей, довольно устойчивы к сильным кислотам и слабым щелочам, но разрушаются при действии сильных щелочей. Недостатками их являются хрупкость и зависимость показателей диэлектрических свойств от температуры и частоты тока. [c.62]

    Простые виниловые эфиры, получаемые из ацетилена и спиртов, представляют практический интерес главным образом как мономеры для синтеза полимерных веществ. Они полимеризуются по иоиному механизму под влиянием минеральных кислот или галогенидов металлов. Образующиеся полимеры могут быть вязкими жидкостями, твердыми или каучукоподобными веществами, что зависит от природы эфира и молекулярной массы полимера. Они отличаются высокой клеящей способностью и сильной адгезией к различным поверхностям. Этим определяется их применение в клеевых композициях, лаковых составах и пр. [c.303]

    И других СВОЙСТВ асфальтенов, выделенных из природных битумов разных месторождений и разной химической природы (битум асфальтового основания венесуэльского месторождения Боксан, битум нафтенового основания калифорнийского месторождения Медуэй, битум парафинового основания аравийского месторождения Сафоний) показали, что они резко различаются между собой и по составу, и по свойствам [16]. Значительное различие в соотношении молекул асфальтенов с разными массами сильно сказывалось на их растворимости и реологических свойствах, на температурной зависимости вязкостных свойств. Эти свойства, наряду с адгезией к твердым минеральным материалам и погодостойкостью, имеют важное значение и учитываются в случае применения технических битумов в качестве дорожных покрытий, в производстве кровельных и гидроизоляционных материалов. Различия в элементном составе (прежде всего в отношении С/Н), молекулярных весах, растворимости и других свойствах асфальтенов, выделенных из остаточных продуктов переработки нефти, зависят в сильной степени от продолжительности высокотемпературной обработки нефти и нефтепродуктов и от реакционной среды (окислительной, восстановительной, нейтральной). [c.254]

    При высоких температурах (200—450 °С) на приборе Папок изучали адге- зию при отрыве стального кольца от поверхности пленки нефтепродукта, заключенного между кольцом и металлическим диском. На основании исследований [Продуктов прямогонного происхождения Ишкильдин [50] пришел к выводу, что адгезия зависит от соотношения групповых компонентов в нефтяных остатках и с повышением концентрации асфальтенов она возрастает. Кроме того, адгезия зависит от природы, дисперсности и состояния контактной поверхности. С увеличением адсорбционной способности и химической активности поверхности коксов адгезия пеков к ним возрастает. В общем случае факторы, обусловливающие повышенную адгезию жидких продуктов к углеродам (температура, время контакта, давление и др.), приводят к получению углеродонаполненных систем и далее конечных продуктов с хорошими эксплуатационными показателями. [c.78]

    Таким образом, смачивающая способность жидкостей и адгезионное взаимодействие их с твердыми телами в основном определяются природой веществ, составляющих контактирующие фазы. Сопоставление уравнений (Т 12) и (I. 14) показывает, что высокая адгезия между фазами может реализоваться лишь прн определенном соотношении значений Стт-г и сГж-г (сгт-г > сГж-г)- Решзющее значение при этом играет состояние поверхности твердого тела и его поверхностное натяжение. [c.21]

    Работа адгезии при смачивании твердых тел обычно положительна, так как между телами любой природы всегда действуют силы притяжения. В зависимости от взаимодействия на межфазной границе значение может колебаться от 1 до 0. При экспериментальном сопоставлении олеофильности материалов в присутствии углеводородной жидкости, когда постоянная величина, os9, следовательно, и Za будут однозначно определяться поверхностной энергией материала. Поэтому более высокое значение Zj будет соответствовать большей олеофильности материала и в соответствии с уравнением (2.28) будет означать более высокую вероятность его парафинизации в условиях эксплуатации. [c.100]

    Вывод, указывающий как бы на независимость силы прилипания при высокой гладкости поверхности от природы материала кажется неожиданным, но он вполне объясним. Конечно, с увеличеш1ем неровности поверхности истинная сила прилипания, т.е. зависящая от природы материала специфическая адгезия на единицу поверхности, не меняется, а происходит лишь увеличение истинной поверхности контакта, приходящейся на единицу номинальной поверхности подложки. В результате с ростом шероховатости поверхности наблюдаемая работа адгезии, представляющая собой произведение истинной прилипаемости и истинной поверхности контакта, увеличивается, что сопровождается повышением интенсивности запарафинирования номинальной поверхности. [c.102]

    При на.тшчии адгезионной связи покрытия с металлом независимо от природы связи создаются стерические затруднения в образовании адсорбционных жидкостных слоев влаги на поверхности металла. Следовательно, адгезия покрытия к металлу должна в первое время оказывать определенное влияние на скорость коррозии и, следовательно, на защитные свойства покрытия. [c.35]

    Механизм адгезии парафиновых частиц к поверхностям различной природы невозможно понять без рассмотрения хотя бы в общих чертах особенностей кристаллической струиуры и электронной конфигурации твердых веществ, без представления закономерностей, которым подчиняются их свойства с изменением энергетического состояния. Принято считать, что однородное твердое вещество, состав и плотность которого практически одинаковы во всем объеме любых его образцов (т.е. они не отклоняются от средних значений больше, чем на величину ошибки измерения соответствующего параметра), представляет собой твердое химическое соединение /68/. Существенной особенностью твердого соединения является то, что любые его отдельные части - твердые тела - имеют поверхность. Поверхностный слой твердого вещества, толщиной порядка 10А (около 3-4 монослоев соответствующих структурных единиц), из-за неуравновешенного взаимодействия частиц слоя с частицами основной массы имеет несколько иное строение, что приводит к заметному отличию свойств этого JlJ i от глубинного вещества. Твердое вещество в отличие от газа и жидкости, имеет практически не изменяющееся во времени строение. При этом тип строения ве1цества определяется прежде всего тем, какие связи соединяют его структурные единицы - межмолекулярные или межатомные. [c.106]

    Битум в эмульсии не является инертным компонентом, т.к. его химический состав и физическое состояние влияют не только на свойства самой битумной эмульсии, но и определяют свойства об-разуюш ейся на поверхности пленки. Полярные соединения, содер-жаш иеся в битумах, в частности - нативные кислоты, переходят из углеводородной фазы в водную. Стабильность эмульсий в определенной степени зависит от соотношения ПАВ щелочной и кислой природы, имеющихся в составе битума. Кислые битумы с высоким содержанием органических высокомолекулярных кислот, как правило, дают нестабильные эмульсии с низким уровнем pH, повышенной электропроводимостью и неудовлетворительной адгезией вяжущего к поверхности. [c.94]

    Адгезия является синонимом русского слова прилипание . Под адгезией понимают явление лгежфазного взаимодействия между двумя приведенными в контакт поверхностями фаз различных по своей природе тел. Процессы адгезии играют значительную роль в технологии создания текстильных и композиционных материалов. Законы адгезии проявляются в технологиях полимерных и строительных материалов, клеющих веществ, дорожных материалов и т д. [c.5]

    Мономолекулярная природа поверхностных пленок. Поверхностное давление [1—4]. Нерастворимое и нелетучее вещество, помещенное в небольшом количестве на поверхность жидкости с большим поверхностным натяжением (например воды), может оставаться в виде нерастекающейся капли, либо растекаться по поверхности. Необходимое и достаточное условие растекания вещества — более сильное притяжение его молекул к растворителю (воде), чем друг к другу. Иными словами, работа адгезии между веш,еством и жидкостью в этом случае превышает работу когезии самого вещества. Если это условие соблюдено, то молекулы растекающегося вещества стремятся прийти в непосредственное соприкосновение с жидкостью, обычно называемой подкладкой . Если позволяет площадь подкладки, растекающаяся жидкость образует мономолекулярный слой. Особое состояние вещества в этих пленках представляет большой интерес. [c.51]

    В любом случае для возниююветт адгезии необходимо перемещеипе молекул адгезива (транспортная стадия) к дефектам и активны. центрам поверхности субстрата и их взаимодействие между собой. Механизм адгезии заключается в различных типах. межмоле-ку.трного взаимодействия. молекул контактирующих (раз. На дальних расстояниях, многократно превосходящих размеры взаимодействующих частиц, действуют ван-дер-ваальсовы силы типа дисперсионных, ориентационных, индукционных взаимодействий На расстояниях порядка молекулярных размеров действуют силы обменного и ионного взаимодействия. Роль взаимодействий проявляется в зависимости адгезии от структурных функциональных групп молекул адгезива, что установлено Притыкиным Л.М. В работе [2] установлено, что для данного субстрата каждая функциональная группа органических соединений вносит строго определенный вклад в энергию адгезии. Кроме того, адгезия зависит от природы субстрата, так прочность органических адгезивов к металлическим субстратам изменяется в ря- [c.8]

    Эксперимент по определению силы адгезии гелеобразных концентрированных растворов полимеров к волокну и металлам проводили на специальной лабораторной установке. Для выявления влияния природы субстрата на закономерности изобары адгезии исследован ряд металлов и сплавов сталь, титан, алюминий, бронза, а также полиэфирные волокна. В качестве адгезивов исследованы растворы ПВА и ПМЦ с концентрацией 0,11 -3,5 моль/м и 0,07 - 1,47 соответственно. Адгезия оценивалась усилием отрыва чистого металлического диска или диска, обтянутого полиэфирным волокном (ПЭВ), от поверхности гелеобразного раствора полимера. Характеристики ПЭВ приведены в таблице 2.2. Эксперимент проводился в термостатированной ячейке, заполненной образцом исследуемого материала. При исследовании адгезии на различных температурах ячейка термоста-тировалась. Измерения проводились в режиме температур от 303 К до 353 К (для ПВА) и От 303 К до 333 К (для ПМЦ). Результаты эксперимента приведены в табл.2.3., 2.4. Результаты исследования адгезии от концентрации гелей приведены на рис. 2.1., 2.4. Независимо от типов адгезивов и субстратов наблюдается полиэкстремальная нелинейная за- [c.13]

    Рассматривая межфазное натяжение различных жидкостей,, можно прийти к заключению, что оно связано с химическим строением контактирующих жидкостей, а через него и с их растворимостью. Если привести в соприкосновение друг с другом две чистые жидкости, то ал + ав>с1Ав, т. е. свободная энергия системы в процессе взаимного насыщения уменьшается. Величина уменьшения является мерой производимой химической работы и непосредственно связана с природой обеих жидкостей. В этом случае работа когезии Лк представляет собой работу, которую необходимо затратить против сил сцепления жидкости для превращения в пленку участка с площадью поперечного сечения, равной единице, Работа адгезии Аа определится как работа, которую необхо димо затратить для превращения в пленку сложного слоя, состоящего в месте контакта как из одной, так и из другой жидкости Иначе говоря, Ла есть уменьшение свободной энергии при контакте двух жидкостей  [c.76]


Смотреть страницы где упоминается термин Адгезия природа: [c.504]    [c.121]    [c.193]    [c.547]    [c.151]    [c.26]    [c.285]    [c.64]    [c.72]    [c.168]    [c.116]    [c.6]    [c.41]    [c.134]    [c.175]   
Трение и смазка эластомеров (1977) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Адгезия



© 2025 chem21.info Реклама на сайте