Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упругость модуль Юнга

    Модуль упругости (модуль Юнга) для различных материалов, кг/мм  [c.372]

    Модуль упругости, сдвига, коэффициент Пуассона. Модуль упругости (модуль Юнга) Е =  [c.499]

    Самым прочным металлом является 1г, если оценивать его прочность по модулю нормальной упругости (модуль Юнга). [c.378]

    ГУКА ЗАКОН, устанавливает линейную зависимость между упругой деформацией твердого тела и приложенным мех напряжением Напр, если стержень длиной I и поперечным сечением S растянуть продольной силой F, то удлинение стержня Д/ = FI/ES, где -модуль упругости (модуль Юнга), зависящий от материала стержня Для деформации сдвига (см рис) Г з имеет вид т = Gy, где [c.618]


    Модуль продольной упругости (модуль Юнга) Сосредоточенная сила воздействие вообще Модуль упругости при сдвиге постоянная нагрузка (вес) [c.375]

    Величина О однозначно связана с модулем упругости (модулем Юнга) Е по формуле [c.77]

    В работе [228] исследовали эволюцию структуры и упругие свойства Си, подвергнутой интенсивной деформации РКУ-прессованием при комнатной температуре и последующему отжигу при температурах до 500° С. Упругие модули Юнга Е и сдвига О вычисляли из величин скоростей VI и VI соответственно продольных и поперечных ультразвуковых волн по известным соотношениям [c.169]

    Упругие характеристики изотропных твердых тел определяются двумя независимыми параметрами постоянной Ламе Л и модулем упругости при сдвиге Сили жесткостью) ц. При практических исследованиях механических свойств твердых полимеров, кроме того, измеряют другие независимые упругие постоянные модуль продольной упругости (модуль Юнга) Е, коэффициент Пуассона V и объемный модуль упругости (модуль упругости при всестороннем сжатии) В - [c.283]

    Начальной стадией деформации металла является упругая деформация (участок АВ рис. 2.8). С точки зрения кристаллического строения, упругая деформация проявляется в некотором увеличении расстояния между атомами в кристаллической решетке. После снятия нафузки атомы возвращаются в прежнее положение и деформация исчезает. Другими словами, упругая деформация не вызывает никаких последствий в металле. Чем меньщую деформацию вызывают напряжения, тем более жесткий и более упругий металл. Характеристикой упругости металла являются дна вида модуля упругости модуль нормальной упругости (модуль Юнга) - характеризует силы, стремящиеся оторвать атомы друг от друга, и модуль касательной упругости (модуль Гука) - характеризует силы, стремящиеся сдвинуть атомы относительно друг друга. Значения модулей упругости являются константами материала и зависят от сил межатомного взаимодействия. Все конструкции и изделия из металлов эксплуатируются, как правило, в упругой области. Таким образом, упругость - это свойство твердого тела восстанавливать свою первоначальнуто фор.му и объем после прекращения действия внешней нафузки. Модуль упругости практически не зависит от структуры металла и определяется, в основном, типом кристаллической решетки. Так, например, модуль Юнга для магния (кристаллическая решетка ГП% ) равен 45-10 Па, для меди (ГКЦ) - 105-10 Па, для железа (ОЦК) - 210-10 Па. [c.28]


    X — степень кристалличности полимера У — модуль упругости (модуль Юнга) [c.6]

    Термостойкость стекла зависит от цел ого ряда его свойств, важнейшими и з которых являются коэффициент термического расширения, прочность на разрыв и модуль упругости (модуль Юнга). [c.19]

    Модуль продольной упругости (модуль Юнга) Е и [c.37]

    Модуль упругости (модуль Юнга) — одна из существенных характеристик эластомеров. Этот параметр коррелирует с молекулярной массой между узлами поперечной сшивки [76, с. 165] по кинетике изменения с наибольшей достоверностью можно судить о степени завершенности процесса структурирования. Значение модуля упругости является определяющим при расчете конструкций ряда изделий из эластомеров, например шин, акустических устройств и т. д. Представляет интерес по изменению модуля упругости исследовать поведение эластомеров при воздействии температуры в различных средах. [c.116]

    Пластич. деформация твердого тола всегда сопровождается его упрочнением, т. е. ростом напряжения по мере роста пластич. деформации. У п р о ч н е-н и е в процессе пластич. деформации характеризуется коэфф. упрочнения к = йР1<1г, где Р — напряжение и е — пластич. деформация. Коэфф. упрочнения называют иногда модулем нормальной пластичности. Его величина на 2—3 порядка меньше модуля нормальной упругости (модуля Юнга). [c.34]

    Кристаллические твердые вещества обладают модулем продольной упругости (модулем Юнга) порядка 10 —10 дин1см и очень малым конечным удлинением. Если такое тело растянуто до постоянной длины и температура понижается при сохранении той же длины тела, то напряжение непрерывно возрастает. По ур. (XVII, 3) это означает, что изменение внутренней энергии, связан- [c.576]

    Если течение не является типичным свойством твердообразных систем, что особенно характерно для конденсационно-кристаллизационных структур, то реологические зависимости строят по отношению к деформации, а не к ее скорости. Типичная кривая зависимости деформации от напряжения для твердых тел показана на рис. VII. 15. Прямолинейный участок кривой ОА отвечает пропорциональности деформации напряжению сдвига в соответствии с законом Гука (VII. 3). До напряжения Ри отвечающего точке А, размер и форма тела восстанавливаются после снятия нагрузки. Важными параметрами такой системы являются модуль упругости (модуль Юнга) и модуль эластической деформации. Считают, что в суспензиях с коагуляционной структурой модуль упругости (модуль быстрой эластической деформации) характеризует твердую фазу дисперсий, а модуль медленной эластической деформации — пространственную сетку с прослойками дисперсионной среды (возможно скольжение частиц относительно друг друга без разрыва связей). Напряжение Р соответствует пределу текучести (правильнее — пределу упругости). С увеличением напряжения проявляется пластичность, а после его снятия — остаточные деформации. При напряжении Рг (точка ) происходит течение твердообразной системы. При дальнейшем увеличении напряжения до величины Рз (точка В), соответствующей пределу прочности, обычно наблюдается нег<оторое упрочнение тела, затем наступает разрушение системы. [c.380]

    Удобным методом определения модуля упругости жестких материало в со слабым поглощением является возбуждение свободных колебаний и определение собственных частот, которые зав<исят как от геометрической схемы эксперимента, так и от модуля упругости (модуля Юнга Е) материала. При динамических измерениях модуль Юнга заменяется модулем накопления при растяжении Е.  [c.148]

    Обозначения основных величин, принятые ниже, следующие р — плотность (объемная масса) Ею — модуль упругости (модуль Юнга) 8 — диэлектрическая проницаемость tg б— тангенс угла диэлектрических потерь Q — добротность / — частота А///о — уход резонансной частоты в указанном интервале температур Сзв — скорость звука d — пьезоэлектрический модуль 33 — пьезоэлектрический модуль продольных колебаний 31 — пьезоэлектрический модуль радиальных колебаний d/e, d/Y — характеристика эффективности в режиме приема iotgS. ro/etg6 — характеристики эффективности в режиме излучения  [c.339]

    Кристаллические твердые вещества обладают модулем продольной упругости (модулем Юнга) порядка 10 —дин/см и очень малым конечным удлинением. Если такое тело растянуто до постоянной длины и температура понижается при сохранении той же длины тела, то напряжение непрерывно возрастает. По ур. (XVII, 3) это означает, что изменение внутренней энергии, связанное с этим напряжением dUldl)T,v, значительно по величине и положительно по знаку, т. е. внутренняя энергия тела возрастает. [c.568]

    С коэфф. т.ер.чического расширения 8,28 10 град коэфф. теплопроводности 0,0218 кал см X X сек град теплоемкость 6,56 кал г-атом - град электрическое сопротивление 140,5 мком см. Отличается самым высоким поперечным сечением захвата тепловых нейтронов — 460С0 барн. Работа выхода электронов — 3,07 эв. Кюри точка 17° С (290 К). Модуль норм, упругости (модуль Юнга) 5730 кгс мм предел прочности 18,6 кгс мм НВ = = 60. Легко поддается мех. обработке. Химически активен. При высоких т-рах активно взаимодействует с кислородом, галогенами, серой, азотом, углеродом и др. неметаллами. Во время длительного хранения на воздухе при наличии водяных паров подвергается коррозии (см. Коррозия металлов). Г. сплавляется [c.240]



Смотреть страницы где упоминается термин Упругость модуль Юнга: [c.300]    [c.216]    [c.127]    [c.197]    [c.391]    [c.419]    [c.10]    [c.349]    [c.383]    [c.234]    [c.244]    [c.234]    [c.397]    [c.249]    [c.423]    [c.340]    [c.249]    [c.423]    [c.249]    [c.423]    [c.256]    [c.416]    [c.444]    [c.72]    [c.378]    [c.301]    [c.55]   
Коллоидная химия 1982 (1982) -- [ c.24 , c.308 , c.325 , c.334 ]




ПОИСК





Смотрите так же термины и статьи:

Модуль

Модуль нормальной упругости Юнга

Модуль упругости модуль Юнга

Расчет модуля упругости (Юнга) и модуля сдвига стекол

Упругий модуль

Юнга модуль

Юнга чод



© 2025 chem21.info Реклама на сайте