Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Параметры градуировочного ошибки при определении параметров методом наименьших квадратов

    Для определения численных значений коэффициентов в эмпирических уравнениях чаще всего используется линейный метод наименьших квадратов, который в процессе решения позволяет минимизировать дисперсию предсказания средних значений получаемых концентраций. Однако более важной может быть устойчивость при плохо обусловленной системе. Характеристикой обусловленности системы является величина конд-минимума сонс А. Для уравнений типа (14.170) и (14.171) соп(1 А имеет наименьшее значение, когда матрица параметров уравнений связи ортогональна. При анализе Л -компонентного образца на содержание (уУ-1)-компонентов можно построить ортогональную матрицу коэффициентов. При анализе на все компоненты матрицу можно привести к квазиортогональному виду. Таким образом, для обеспечения минимальной погрешности анализа и высокой устойчивости уравнений связи к экспериментальным ошибкам необходимо, чтобы матрица параметров уравнений связи была орто-или квазиортогональной, а система для определения этих параметров также имела орто- или квазиортого-нальную матрицу концентраций. Чтобы избавиться от неопределенности в значениях коэффициентов уравнения, необходимо состав градуировочных образцов выбирать по схеме ортогонального планирования. Для этой цели можно воспользоваться планами симплекс-решетки Шеффе. [c.35]



Смотреть страницы где упоминается термин Параметры градуировочного ошибки при определении параметров методом наименьших квадратов: [c.92]    [c.280]   
Применение математической статистики при анализе вещества (1960) -- [ c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Метод параметрам

Методы определения параметра

Ошибка определения

Параметры определение

ошибки



© 2025 chem21.info Реклама на сайте