Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модуль упругости и морфология смесей

    Если число фаз в гетерогенной композиции больше двух, характеристика ее морфологии и выбор метода расчета упругих и вязкоупругих свойств значительно усложняется, В качестве примера рассмотрена тройная ко.мпозиция, представляющая собой смесь двух типов гомогенных частиц наполнителя с различными упругими константами матрицы. Расчеты верхнего и нижнего пределов по уравнениям (3.4) и (3.5) можно производить прямым путем, однако при использовании уравнений (3.11) и (3.12) возникает некоторая неопределенность. Эти уравнения, в принципе, можно использовать непосредственно для расчета модулей многокомпонентных систем, однако лучшие результаты дает двухступенчатое применение уравнений [17]—сначала для расчета модуля композиции с одним типом частиц, а затем для расчета модуля композиции в целом на основе полученных данных о модуле матрицы с учетом свойств другого типа частиц дисперсной фазы. По-видимому, не существует теоретического обоснования порядка такого двухступенчатого расчета. Было показано [46], что результаты, полученные для модуля упругости при сдвиге при ступенчатом использовании уравнения (3.14), зависят от порядка чередования типа частиц наполнителя при расчете и не эквивалентны результатам расчета при использовании трехкомпонентной формы уравнения (3.12). Определенную роль при этом играет относительный размер частиц наполнителей разных типов. Кажется естественным, что если размер частиц наполнителя одного типа в среднем значительно больше второго, то меньшие частицы и матрица совместно образуют более эффективную матрицу для более крупных частиц. Экспериментальные данные по [c.168]



Полимерные смеси и композиты (1979) -- [ c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Модуль

Морфология

Упругий модуль



© 2025 chem21.info Реклама на сайте