Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнитель выбор формы частиц

    При выборе геометрической формы частиц наполнителей учитывается их влияние на распределение нагрузки в композиции и, следовательно, на механизм разрушения пластика. Кроме того, принимаются во внимание размеры и форма изделий, технология переработки пластиков и многое другое. Так, в случае изделий малой толщины и сложной конфигурации предпочтение отдается высокодисперсным наполнителям (порошкам), поскольку они легко распределяются в связующем, сохраняя исходное распределение в процессе формования изделий. Применение высоко дисперсных наполнителей снижает вероятность разрушения и расслаивания изделий при последующей механической обработке [18, с. 1]. [c.16]


    При выборе наполнителя и его концентрации учитывают совокупность влияния на все функциональные свойства продукта его структуры, дисперсности и модификации. Форма частиц наполнителя может быть разнообразной сфероидальной (технический углерод), пластинчатой или чешуйчатой (слюда, тальк, графит), игольчатой (асбест), кубической (оксиды металлов). Неорганические наполнители имеют кристаллическую ионную, металлическую или смешанную решетку с многочисленными дефектами. Тальк, слюда, дисульфид молибдена и графит имеют смешанные решетки — внутри кристаллических слоев действуют ковалентные, химические силы, между слоями — ван-дер-ваальсовы взаимодействия. Для лакокрасочных материалов содержание наполнителей или пигментов в пленке характеризуют объемной концентрацией пигмента (ОКП) и критической объемной концентрацией пигмента (КОКИ), выше которой качество покрытия резко ухудшается. Их рассчитывают по формулам [89, 128]  [c.167]

    ВЫБОР ФОРМЫ ЧАСТИЦ НАПОЛНИТЕЛЯ [c.16]

    Реологические свойства расплавов наполненных полимеров имеют очень важное значение при выборе оптимальных условий переработки. Вязкость расплавов, а также температура текучести Тт полимеров сильно зависят от концентрации наполнителя и формы его частиц. При этом если в расплаве формируется структура, образованная частицами наполнителя, то реологические свойства [c.182]

    Полые сферич. наполнители м. б. полимерными, стеклянными, из керамики и металлов. Наиболее часто используют наполнители из отвержденной феноло-формальдегидной смолы и стекла. Полые сферы из феноло-формальдегидных смол получают на дисковых распылительных сушилках. Композиция, состоящая из смолы (в виде р-ра, эмульсии или тонкоизмельченного порошка), в к-рую введены газообразователь, поверхностно-активное вещество и др. добавки, с помощью форсунок подвергается тонкодисперсному распылению и током горячего воздуха переносится в сушилку. Попадая в зону высоких темп-р, частички смолы плавятся и приобретают форму сферы. Одновременно с этим происходит разложение газообразователя с выделением продуктов, к-рые увеличивают размеры сферич. частицы, и нарастание вязкости расплавленной смолы вплоть до потери текучести в результате отверждения. Частицы наполнителя не должны иметь отверстий в оболочке. Это достигается подбором соответствующих газообразователей и др. добавок, а также выбором температурного режима. [c.307]

    Оценка качества смешения эластомерных композиций имеет свои особенности. Неотъемлемой частью контроля является оценка степени диспергирования технического углерода как основного усиливающего наполнителя. Простейшие оценки проводятся визуально по блеску среза смеси и степени неровности его поверхности. Более точные методы оценки степени диспергирования заключаются в том, что из отобранных по закону случайных чисел образцов изготавливаются тонкие пленки или микротомные срезы, которые затем просматриваются в световом либо электронном микроскопе. При выборе метода приготовления образцов следует предпочесть метод микротомных срезов, поскольку в этом случае исключается возможность дополнительной деформации и искажения формы частиц диспергируемой фазы, неизбежно сопровождающих операцию расплющивания образца между предметными стеклами микроскопа [59]. При просмотре образцов фиксируют следующие данные число клеток окулярной сетки в площади отдельного агрегата, площадь отдельного агрегата, количество агрегатов данного размера /п,- условный диаметр агрегата, определенный как корень квадратный из площади агрегата площадь просматриваемого среза 5о. [c.22]


    Реологические свойства расплавов наполненных полимеров и растворов имеют большое значение при выборе условий их переработки в изделия [460, 461]. Вязкость расплавов, температура текучести сильно зависят от концентрации наполнителя и формы его частиц. При этом если в расплаве формируется структура, образованная частицами наполнителя, то реологические свойства в значительной мере определяются такой структурой. Реологические свойства полимерной среды также играют первостепенную роль и по-разному сказываются на реологическом поведении наполненных систем. [c.190]

    Композиционные материалы представляют собой многофазные системы, полученные из двух или более компонентов и обладающие новым сочетанием свойств, отличным от свойств исходных компонентов, но с сохранением индивидуальности каждого отдельного компонента [36]. Основными компонентами композиционного материала являются полимерная основа (матрица) и наполнитель (дисперсный или волокнистый). При введении наполнителя требуется соблюдать критическую степень (оптимум) наполнения, соответствующую не только максимальному улучшению физико-механических свойств, но и высокой химической стойкости [37, 38, с. 32—35 39]. При выборе компонентов и определении их необходимого содержания в композиции следует учитывать форму и размер частиц наполнителя, возмож- [c.15]

    Выбор наполнителей полимерных материалов зависит от назначения материала, необходимости изменения определенных физико-механических характеристик и типа полимерной матрицы. Вместе с тем как наполнители для производства ПКМ можно использовать практически все существующие в природе материалы (в том числе полимерные) после придания им определенной формы и размеров в виде сфер, порошков с частицами нерегулярной формы и различным фракционным составом, чешуек, лент, волокон, жгутов, тканей, бумаги, матов, войлока и т.п., распределенных различным образом и в различных соотношениях с матрицей [4]. [c.12]

    Несмотря на большое число работ, посвяш енных свойствам систем, содержащих наполнители с несферическими частицами, лишь в очень немногих из них рассматриваются вопросы механизма действия анизодиаметричных частиц на свойства полимеров [1]. Изучение влияния формы частиц наполнителя на свойства наполненных систем проведено в настоящей работе. В качестве объекта для исследования была взята система, состоящая из поли-нзобутилена мол. веса 670 ООО , наполненного волокном лавсан (нолиэтилен-терефталат). Выбор этих веществ дает возможность проводить исследования в широком интервале температур, причем волокно лавсан сохраняет неизменность размеров и формы при температурах, значительно более высоких, чем температуры стеклования и текучести полиизобутилепа. Следует заметить, что лавсан однородно распределяется в полиизобутилене, что позволяет получать хорошие образцы. [c.379]

    Поскольку один наполнитель, как правило, не может удовлетворять всем предъявляемым требованиям, в ряде случаев применяют смесь наполнителей. Весьма эффективно использование смеси, состоящей из двух наполнителей, имеющих различную форму, например волокон и стеклянных микросфер. При правильном выборе размера частиц наполнителей более мелкие частицы располагаются внутри обогащенных связующим областей, образованных более крупными частицами, и вытесняют полимерное связующее. Это улучщает смачивание частиц связующим и повыщает текучесть композиции и механические свойства отвержденного материала 1[137]. [c.102]

    Наряду с полимерными матрицами в композиционных материалах можно широко варьировать наполнители, причем в одном материале можно использовать два или более наполнителей, каледый из которых образует отдельную фазу. Неограниченная вариабельность состава композиционных материалов создает большие трудности при описании и обобщении их свойств. Свойства композиционных материалов определяются не только свойствами и соотношением компонентов, но и в значительной степени характером распределения частиц наполнителей, их формой и размерами. Очевидно, что свойства стеклопластиков в решающей степени зависят от того, использованы ли при их производстве ориентированные волокна или тонкодисперсные порошки. В связи с этим возникает необходимость классификации и описания важнейших типов наполнителей, используемых в производстве композиционных материалов на основе полимерной матрицы. Выбор наполнителя зависит главным образом от тех свойств, которые он должен придать материалу с учетом стоимости и его совместимости с поли.мерной матрицей. [c.369]

    Результаты измерения Цр и представлены на рис. 5.13 и 5.14. Сравнение полученных результатов с теоретическими зависимостями и их анализ показали, что ход зависимости Л вн от содержания наполнителя подтверждает для магнитномягких резин общую закономерность увеличения размагничивающего фактора с уменьшением наполнения и правильность формулы (5.2) с условием правильного выбора вида зависимости р,р от р и (1ф. Формулы (5.4) и (5.6) дают значения, наиболее близкие к экспериментальным. Формула (5.6) более совершенна, чем формула Лихтенекера, но она остается эмпирической несмотря на то, что учитывает зависимость (X от дисперсности и формы частиц. Вывод формулы Оллендорфа, как показано Фрадкиным, физически обоснован, но не учитывает взаимодействия соседних частиц этим, по-видимому, и объясняется отклонение формулы от эксперимента в области / > 15% [142]. [c.133]


    Приведенные выше выражения не учитывают также зависи-( ости свойств компаундов от размера частиц наполнителя, их )ормы. Поэтому выбор оптимального наполнителя является до- таточно сложной задачей, которую решают сейчас эмпирически. 3 некоторых случаях целесообразно применять сложные смеси 1аполнителей, включающие частицы разной формы и природы (например, кварц, тальк или каолин). [c.163]

    Форма, размер частиц и их распределение по размерам. Часто выбор наполнителя определяется размером его частиц и их полидисперсностью, т.е. распределением частиц по размерам. Большинство неорганических наполнителей представляет собой минералы, добываемые из соответствующих пород и руд с необходимой обработкой, последующим дроблением и тонким измельчением. При этом частицы наполнителей приобретают, как правило, неправильную форму и характеризуются значительной полидисперсностью по размерам. Ряд наполнителей, которые получены химическими методами (осаждением из растворов, пирогенным и др.), имеет частицы достаточно правильной формы и высокой дисперсности. К ним, например, относятся осажденные силикаты, стеклосферы, аэросил, карбонат кальция и глинистые минералы, диатомит и др. [c.94]

    Если число фаз в гетерогенной композиции больше двух, характеристика ее морфологии и выбор метода расчета упругих и вязкоупругих свойств значительно усложняется, В качестве примера рассмотрена тройная ко.мпозиция, представляющая собой смесь двух типов гомогенных частиц наполнителя с различными упругими константами матрицы. Расчеты верхнего и нижнего пределов по уравнениям (3.4) и (3.5) можно производить прямым путем, однако при использовании уравнений (3.11) и (3.12) возникает некоторая неопределенность. Эти уравнения, в принципе, можно использовать непосредственно для расчета модулей многокомпонентных систем, однако лучшие результаты дает двухступенчатое применение уравнений [17]—сначала для расчета модуля композиции с одним типом частиц, а затем для расчета модуля композиции в целом на основе полученных данных о модуле матрицы с учетом свойств другого типа частиц дисперсной фазы. По-видимому, не существует теоретического обоснования порядка такого двухступенчатого расчета. Было показано [46], что результаты, полученные для модуля упругости при сдвиге при ступенчатом использовании уравнения (3.14), зависят от порядка чередования типа частиц наполнителя при расчете и не эквивалентны результатам расчета при использовании трехкомпонентной формы уравнения (3.12). Определенную роль при этом играет относительный размер частиц наполнителей разных типов. Кажется естественным, что если размер частиц наполнителя одного типа в среднем значительно больше второго, то меньшие частицы и матрица совместно образуют более эффективную матрицу для более крупных частиц. Экспериментальные данные по [c.168]


Смотреть страницы где упоминается термин Наполнитель выбор формы частиц: [c.8]    [c.2]   
Пластики конструкционного назначения (1974) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители

Частицы форма



© 2025 chem21.info Реклама на сайте