Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки плоского волокна

    Сравним теперь, как меняется мембранный потенциал в геометрически разных объектах по мере удаления от точечного источника тока (микроэлектрода в случае реальных клеток и тканей). В сферической клетке сдвиг потенциала одинаков в любой точке ее мембраны — она эквипотенциальна. В цилиндрическом волокне потенциал спадает по экспоненте (рис. 48, б), а в синцитии потенциал спадает гораздо круче, чем по экспоненте например, спад потенциала в таком почти плоском тонком синцитии, как предсердие лягушки описывается функцией Бесселя (рис. 48 б). [c.199]


    Основу этих органов составляют столбики из плоских клеток (рис. 63, а), лежащих друг на друге, как пары медь — цинк в вольтовом столбе или как стопка монет, К одной поверхности каждой клетки (на нашем рисунке — к нижней) подходит нервное окончание. Когда орган находится в покое, обе стороны каждой клетки имеют одинаковый потенциал (ПП) и ток через орган не идет. Когда же по всем нервным волокнам одновременно приходят импульсы, постсинаптическая (нижняя на рисунке) мембрана резко повышает свою проницаемость к ионам ( электрическая дырка ) и потенциал на ней падает до нуля. Это приводит к возникновению тока, текущего через клетку (рис. 63, б). Все клетки столбика соединены последовательно и поэтому их потенциалы суммируются, как в последовательно соединенных гальванических элементах. Такое объяснение дал работе электрических органов рыб создатель мембранной теории биопотенциалов [c.247]

    Получение зрительного изображения требует более тонкого устройства. Холдейн указывал, что возможны лишь четыре типа глаза, если определить глаз как орган, в котором свет, распространяющийся в одном направлении, стимулирует нервное волокно. Это — пучок трубочек, установленных по разным направлениям, и три типа устройств, подобных хорошо известным инструментам камера с булавочным отверстием, обычная камера с линзой и телескоп-рефлектор. Булавочное отверстие служит фоторецепции у плоских червей — планарий. У дождевого червя светочувствительные клетки, наличествующие на поверхности [c.467]

    У высших организмов ДНК находится в хромосомах. Хромосомы имеют разную форму, которая зависит от центрической перетяжки. В каждой хромосоме содержится гигантская молекула ДНК (ММ 101 Да, линейная длина — несколько сантиметров), которая составляет основу хроматина. Хроматин — комплекс ДНК с РНК и белками (ДНК — 30-45%, гистоны — 30-50, негистоновые белки - 4-30, РНК - до 10%). Структурная организация хроматина такова, что позволяет использовать одну и ту же генетическую информацию ДНК, присущую данному виду организма, по-разному в специализированных клетках. При этом основная часть хроматина не активна. Она содержит плотно упакованную ДНК. Активный хроматин составляет в разных клетках от 2 до 11%. Упаковка (компактизация) ДНК следующая. Нуклеосома содержит отрезок двуспиральной ДНК, равный по протяженности 140 парам оснований, обвитый в 1,5 оборота вокруг ядра, состоящего из гистонов (2Н1, 2Н2а, 2Н2в и 2Н3). Степень компактизации — 5 раз. Примерно 90% ДНК входит в состав нуклеосом, 10% содержится в перемычках между нуклеосомами (30-60 пар, связанных с гистоном Н ). Считают, что нуклеосомы содержат фрагменты молчащего хроматина, а перемычки — активного. При развертывании нуклеосомы весь хроматин активный. Диско-идные нуклеосомы имеют диаметр 10 нм и высоту 5 нм. Из них образуются фибриллы. Фибриллы толщиной Ю нм состоят из ряда нуклеосом, касающихся друг друга своими краями и ориентированных плоскими поверхностями вдоль оси фибрилл. Фибриллы скручиваются в спираль, на виток которой приходится 6-7 нуклеосом. В результате образуется хроматиновое волокно диаметром 30 нм. Для того чтобы образовалась митотическая хромосома нормального размера, волокно такого диаметра должно подвергнуться дополнительной компактизации с уменьшением результирующей длины в 100 раз. [c.293]


    В процессе развития глаза между клетками и тканями возникают сложные взаимодействия (индукционные и тормозящие), характерные для морфогенетического поля. Как уже говорилось в гл. 10, в развивающемся переднем мозге появляются два боковых выпячивания — глазных пузыря. Глазные пузыри дорастают до эктодермы. В зоне контакта с эктодермой глазной пузырь индуцирует в ней образование линзы (рис. 11-3, 5). Эктодерма утолщается, погружается внутрь и отшнуровывается, образуя зачаток липзы. Клетки наружной поверхности линзы (обращенные к эктодерме) остаются плоскими и образую,т линзовый эпителий. Клетки внутренней поверхности (обращенные к глазному пузырю) значительно утолщаются и начинают синтезировать специфические линзовые белки, которые кристаллизуются в линзовые волокна. Меридиональное расположение волокон приводит к образованию двояковыпуклой липзы. Находящаяся над линзой роговица состоит из клеток двух типов. Наружный ее слой образуют эпителиальные клетки, внутренний — рыхлые мезенхимные. В радужине развиваются пигментные клетки и мышцы, контролирующие размер зрачкового отверстия. Между тем после контакта с эктодермой полость глазного пузыря уменьшается, его стенка впячивается, и в конце концов он принимает вид чаши рис. 11-3, В, Г). В толстом внутреннем слое образуются фоторецепторы и нервные клетки (сетчатка). Тонкий наружный слой превращается в пигментный эпителий. Волокна нервных клеток через глазной стебелек попадают в мозг. Опыты, поставленные па зародышах амфибий, позволили установить следующие факты. [c.191]


Смотреть страницы где упоминается термин Клетки плоского волокна: [c.367]    [c.42]    [c.114]   
Биохимия Том 3 (1980) -- [ c.25 ]




ПОИСК







© 2024 chem21.info Реклама на сайте