Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диаграммы равновесия двухкомпонентных систем второго типа

    Перейдем теперь к двухкомпонентным системам, для состояния которых необходимо указание уже трех переменных например, давления, температуры и концентрации. Взаимосвязь трех переменных величин изображается с помощью трехмерной фигуры. Рассмотрим пример такой фигуры для бинарной системы, компоненты которой в жидком состоянии образуют гомогенные растворы во всей области концентрации, а в твердом состоянии вообще не растворяются один в другом (рис. 117). На рисунке изображены области трех агрегатных состояний парообразного, жидкого и твердого. Точки I, 2 я Г, Т соответствуют температурам кипения чистых компонентов при различных давлениях, а расположенные ниже точки 5, 6 и 5, 6 — температурам плавления. На диаграмме можно различить ряд поверхностей. Так, выпуклая поверхность 132 1 2 3 выражает зависимость температуры кипения жидких растворов от состава пара. Под ней находится вогнутая поверхность М2 Г, 4, 2, выражающая зависимость температуры кипения от состава жидкого раствора. Сечения такого типа диаграмм, относящиеся к постоянному давлению (р = = I атм), мы рассматривали в гл. VII (см. рис. 109). Поверхность 576 5 7 6 — диаграмма плавкости, т. е. зависимость температуры начала кристаллизации расплава от его состава и давления. Точнее говоря, при температурах и составах, соответствующих точкам на поверхности 575 7, жидкий расплав может находиться в равновесии с твердым первым компонентом, а соответственно на поверхности 76 7 6 — с твердым вторым компонентом. [c.319]


    Расчет диаграмм состояния заключается, во-первых, в предсказании типа диаграммы состояния на основе свойств чистых компонентов и, во-вторых, в отыскании уравнений линий равновесия сосуществующих фаз. Основой при этом является знание температурной и концентрационной зависимости энергии Гиббса (О), которая в приближении идеальных растворов для любой фазы двухкомпонентной системы, состоящей из компонентов I и / определяется в общем случае выражением  [c.286]


Смотреть страницы где упоминается термин Диаграммы равновесия двухкомпонентных систем второго типа: [c.290]    [c.329]   
Физическая химия (1987) -- [ c.170 , c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Диаграмма диаграмма равновесия

Диаграммы равновесия двухкомпонентных систем

Диаграммы равновесия двухкомпонентных систем систем

Диаграммы системы

Равновесие диаграмма равновесия

Равновесие системе

Системы двухкомпонентные

Системы с равновесием газ — газ второго типа



© 2024 chem21.info Реклама на сайте