Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометр имеющий плоский кристалл

    Следует рассмотреть случаи анализа при помощи детектора с дисперсией по энергии или кристалл-дифракционного спектрометра, смонтированных в обычном РЭМ. Если поверхность образца плоская и гладкая, следует учесть лишь несколько препятствий для проведения количественного анализа. Наиболее важными из них являются коррекция фона, которая будет рассматриваться в гл. 8, и точное знание угла выхода рентгеновского излучения г ). В РЭМ для получения приемлемого угла выхода рентгеновского излучения образец обычно наклоняют. Неопределенности в значении г]) обычно влияют на расчеты поправки на поглощение их роль увеличивается с уменьшением ф [126]. Таким образом, необходимо иметь значение ч1з>30 . Кроме того, исключительно важно, чтобы измерения на образце и эталоне проводились при одинаковых значениях угла выхода рентгеновского излучения. [c.14]


    Основные части рентгеновского спектрометра показаны на рис. 5.9. Прибор состоит из рентгеновской трубки с высокой интенсивностью излучения, камеры образца, коллиматора, кристалла-анализатора и прибора для определения длины волны излучения (по углу его отражения от кристалла-анализатора). На этом устройстве, называемом гониометром, укреплен детектор излучения, связанный с соответствующими электронными устройствами. Существуют различные типы приборов. В наиболее общепринятом типе используется плоский кристалл-анализатор, и поток излучения коллимируется рядом параллельных пластин. В других моделях используется кристалл с искривленной поверхностью, фокусирующий отражаемое им излучение. [c.102]

    Анализатором рентгеновских лучей в каждом из этих приборов служило устройство, состоявшее из 50 плоских, слегка повернутых друг относительно друга кристалликов кварца, вблизи отражающей поверхности которых располагали не прозрачный для рентгеновских лучей клин. Таким образом, каждый из кристаллов анализатора мультикристалл-спектрометров Дю-Монда и Киркпатрика отражал рентгеновские лучи в условиях, аналогичных тем, которые имеют место в спектрографах, работающих по методу Зеемана. Все 50 плоских кристалликов прибора ориентировали один относительно другого таким образом, чтобы монохроматические лучи после отражения их от поверхности кристалла пересекались в одной точке или в небольшой узкой области пространства. Это будет иметь место, если кристаллы расположены так, что продолжения их поверхностей (в случае, представленном на рис. 1,а) или нормалей к ним (рис. 1,6) пересекаются в одной точке. Если обозначить это расстояние буквой то сфокусированные прибором пучки монохроматических лучей различных длин волн будут располагаться на одной общей окружности, радиус которой равен Совмещая с этой окружностью — так называемой окружностью изображения — фотопленку, можно зарегистрировать на ней достаточно узкие линии рентгеновского спектра, характеризующие радиацию, излучаемую поверхностью антикатода рентгеновской трубки спектрографа. Очевидно, что ширина [c.9]

    Измерения рассеяния под малыми углами были проведены Шаллом, Россом [19] п Гинье [2, 13]. Два первых автора пользовались плоским кристаллическим монохроматором и фотографической регистрацией интенсивности рассеянного излучения. Гинье также работал фотографическим методом, используя фокусирующий монохроматор с изогнутым кристаллом. Измерения под малыми углами можно проводить также на несколько видоизмененном рентгеновском спектрометре Филипса. Этот прибор показан на рис. 8. Чтобы им пользоваться, необходимо только установить [c.366]



Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.193 ]




ПОИСК







© 2025 chem21.info Реклама на сайте