Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектроскопия поверхность кристаллов

    В свою очередь изучение равновесных и неравновесных свойств газов, структуры кристаллов, диэлектрических, оптических и других свойств вешеств дает много для понимания природы межмолекулярных сил. Спектроскопия в ее различньк формах — интенсивное средство исследования межмолекулярных сил. Наиболее мощным и перспективным для их исследования является метод рассеяния молекулярных пучков. Межмолекулярное взаимодействие играет большую роль и в химических процессах, оно проявляется в реакциях, протекающих в растворах, на поверхностях и в катализе. Исследование этих процессов также дает многое для поним шия межмолекулярного взаимодействия. Межмолекулярные силы сейчас исследуются очень интенсивно из-за большой важности для физики, химии, молекулярной биологии, кристаллографии, науки о полимерах, коллоидной химии, химии поверхностей и других естественных наук. [c.263]


    Что же касается измерения степени кристалличности образца, то для этой цели с успехом применяются методы измерения плотности, теплот плавления, метод рентгеновской дифракции, метод инфракрасной спектроскопии, метод ЯМР широких линий и т. д., которые основаны па модели двухфазного строения полимеров, т. е. наличие кристаллических и некристаллических (аморфных) областей. Однако в данном случае возникает принципиальный вопрос о правомочности отнесения складок к аморфным участкам. Три последних метода, в которых применяется облучение образцов, позволяют в принципе измерять анизотропию их кристалличности, если образцы получены прессованием большого числа пластинчатых кристаллов. В этом смысле перечисленные методы дают информацию непосредственно о структуре поверхностного слоя, содержащего складки. В частности, как показывают результаты исследования методом ЯМР, относительное содержание участков, обладающих подвижностью, не превышает нескольких процентов. Отсюда следует, что на поверхности монокристаллов находится слой полимера, свойства которого близки к свойствам аморфного образца [52—54]. Кроме того, оказалось, что значения степени кристалличности монокристаллов полиэтилена, определенные перечисленными выше методами, находятся в пределах 80—90% [55—59]. [c.231]

    Для ИК-спектроскопии используют образцы в виде пленок, полученных из раствора. Пленки нерастворимых полиамидов могут формоваться горячим прессованием или готовиться микротомом в виде тонких срезов (2—3 мкм). Во всех случаях необходимо с очень высокой точностью контролировать толщину образца. Недавно была предложена новая ускоренная методика приготовления образцов, которая может рассматриваться как метод неразрушающего контроля. Он состоит в том, что пучок ИК-света направляется на поверхность контакта между исследуемым образцом и материалом с гораздо большим показателем преломления со стороны материала с высоким показателем преломления под углом, примерно равным 45°. При этом большая часть энергии отражается от граничной поверхности. Часть потока, прошедшая через граничную поверхность, проникает в исследуемый образец на глубину нескольких мкм. Если таким образом удается создать несколько отражений, то при этом достигается заметное усиление сигнала, что позволяет получать хорошие спектры поглощения. В качестве материала с высоким коэффициентом преломления обычно используют смешанный кристалл бромида и иодида таллия с показателем преломления 2,6. Вследствие того что единственное требование при проведении экспериментов — хороший оптический контакт между призмой с высоким коэффициентом преломления и исследуемым веществом, требуется минимальная подготовка образца. Эта методика пригодна для нерастворимых полиамидов. [c.243]


    ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ ПОВЕРХНОСТИ ПОЛИМЕРНЫХ КРИСТАЛЛОВ [c.252]

    Данные ЭПР спектроскопии очень важны, так как они связаны с относительными энергиями -орбиталей переходных металлов. С их помощью можно получить сведения о природе связи и наличии радикалов, например в окислительно-восстановительных процессах [291]. Холмогоров [392] пришел к выводу, что сигналы фталоцианинов не связаны с самой структурой или с а- или р-моди-фикациями, а принадлежат либо примесям, либо условиям, которые приводят к появлению неспаренных электронов в кристалле. Эта точка зрения находится в соответствии с предположением [293] о том, что наблюдаемые явления объясняются примесями кислорода, адсорбированного внутри или на поверхности кристалла. Существенно, что такие относительно грубые методы очистки, как перекристаллизация из серной кислоты или промывка органическими растворителями, только постепенно уменьшают интенсивность сигнала в ЭПР-спектре, а дополнительная сублимация образца обычно приводит даже к его увеличению. Отсюда следует, что большинство образцов, взятых для физических исследований, вероятно, содержат либо указанную, либо какую-нибудь другую примесь, которая приводит к искажению результатов. Поэтому ЭПР-спектры могут служить только для качественной характеристики фталоцианинов, получение чистых образцов которых является узким местом исследования. [c.242]

    Иногда ИК-спектроскопией можно воспользоваться для изучения природы складывания цепей на поверхности полимерных кристаллов, полученных из разных растворов. Отношение инфракрасного поглощения для аморфной и кристаллической полос зависит от природы использующегося растворителя и термической предыстории полимера. [c.252]

    Для изучения биметаллических катализаторов используются следующие методы газовая адсорбция [28], дифракция рентгеновских лучей [29], магнитные измерения [30]. Оже-спектроскопия [31], фотоэлектронная спектроскопия [32] и рентгеновская спектроскопия (анализ тонкой структуры рентгеновских спектров в области края поглощения, соответствующего /С-уровню) [33]. Большинство методов не дает прямого определения даже одной из трех характеристик биметаллических катализаторов поверхности и структуры, размера кристалла и химического состояния поверхностных атомов металла. [c.21]

    Об экспериментальных трудностях при изучении адсорбции из раствора методом инфракрасной спектроскопии сообщалось в гл. 1. В настоящее время этот метод нашел основное применение в исследовании адсорбции из растворов на минералах и металлических поверхностях, а также на порошках галогенидов серебра и аналогичных ионных кристаллов. [c.386]

    В ряде работ [79, 1015, 1110, 1296] спектроскопия НПВО использовалась для исследований волокон и текстильных тканей. Однако полученные спектры плохо воспроизводимы в количественном отношении из-за плохого контакта между волокном и кристаллом. Все же воспроизводимость и разрешение сильных полос лучше, чем в спектрах пропускания. Нужно помнить, что методом НПВО мы анализируем преимущественно поверхность волокна. При изучении молекулярной ориентации в полиамидных волокнах нашли [79], что поверхность волокна ориентирована лучше, чем внутренние области. Это имеет место до степеней растяжения [c.90]

    Мессбауэровскую спектроскопию применяли для изучения хемосорбции аммиака на нанесенных железных катализаторах [11, для исследования процессов окисления и восстановления при предварительной обработке нанесенных железных катализаторов [2] и для определения размеров кристаллов окиси железа на носителях с высокоразвитой поверхностью [3—6]. Измеряемые на опыте параметры позволяют определить следующие величины валентные состояния атомов железа в образце градиент электрического поля у ядер атомов железа, образуемый нарушениями решетки вблизи данного ядра или присутствием посторонних атомов в непосредственной близости от него наличие и величину внутреннего магнитного упорядочения существование фазовых пе- [c.64]

    Предпринимались попытки изучения реакций хлоридов Т1 (IV) с алюминийалкилами с помощью оптической и ИК-спектроскопии. Данные этих исследований свидетельствуют о том, что активные центры полимеризации располагаются на дефектных участках поверхности кристаллов р-Т1С1з, где для полного октаэдрического окружения атомов титана не хватает трех атомов хлора [57]. Благодаря близости размеров пустоты на поверхности кристалла p-Ti lз могут быть легко заполнены молекулами КгАЮ , после чего возможна адсорбция (или комплексование) этого соединения [58]. [c.217]

    Арены состоят из 1, 2 и 3 колец с длинными боковыми цепями нормального и изостроения. К числу углеводородов, кристаллизующихся из нефтяных фракций, относятся высокомолекулярные алканы, а также циклоалканы, циклоалкано-арены и арены с длинными цепями нормального и слаборазветвленного строения. Установлено, что циклоалканы, алканы и арены не являются ингибиторами комплексообразования карбамида с нормальными алканами [119]. Согласно новым данным [120], содержание нормальных алканов в парафине в значительной степени возрастает с уменьщением соотношения арены нормальные алканы в исходных дизельных фракциях при одинаковой глубине депарафинизации. Адсорбцию более тяжелых аренов тетралина и а-метилнафталина на кристаллах карбамида и его комплексов с индивидуальными нормальными алканами узучали методами УФ-спектроскопии и ЭПР [2, 121]. При введении аренов в реакционную смесь в момент образования комплекса карбамида с алканами молекулы аренов, адсорбируясь на поверхности кристаллов карбамида, блокируют некоторые его участки и исключают их из процесса комплексообразования, что приводит к снижению эффекта реакции. По данным [122, 123] арены тем сильней ингибируют комплексообразование, чем сильнее проявляются их адсорбционные связи с кристаллами карбамида. [c.80]


    Природа адсорбированных гидроксильных групп широко исследовалась как методом ИК-спектроскопии [67—75], так и химическими методами [76—82]. Установлено, что на поверхности порошкообразного рутила имеется два типа гидроксильных групп, и их природу разумно объясняют, исходя из представлений о поверхностных структурах [18, 73, 75, 83]. Как известно, рутил кристаллизуется таким образом, что на поверхность кристалла в основном выходят три тина граней (ПО), (100) и (101), причем грань (ПО) преобладает (- 60%). Поверхность дисперсных порошков рутила, если они достаточно окристаллизованы, по-видимому, имеет аналогичную структуру. В объеме рутила ионы титана координированы шестью ионами кислорода. На гранях (100) и (101) находятся нятикоординационные ионы титана, а на грани (ПО) — равное количество пяти- и четырехкоординационных ионов (см. Л и на рис. 9). Поэтому можно предположить, что на грани (ПО) при диссоциативной хемосорбции воды образуются два типа гидроксильных групп этот процесс в основном аналогичен рассмотренному для двуокиси кремния и окиси алюминия. Кислород адсорбируемой молекулы воды локализуется в вакантном координационном положении поверхностного нятпкоордина- [c.67]

    С использованием методов рентгенофазового анализа (РФА), ИК и Раман-спектроскопии, установлено, что в результате MO VD процесса разложения п-Bu4Ge в стационарных условиях рост нитевидных кристаллов германия сопровождается образованием углеродсодержащих оболочек, состав которых претерпевает ряд последовательных превращений. А так как германий не образует устойчивых карбидов германия, то процесс термического разложения п-ВщСе протекает путем разделения германия и углерода, при этом примесь углерода мигрирует из твердой системы германий-углерод на поверхность и образует непрерывную оболочку из аморфного углерода в виде сплошной плёнки, плотно облегающей нитевидный кристалл германия. [c.158]

    Плотность аморфного полипропилена, определенная при помощи инфракрасной спектроскопии [27], составляет 0,8500 или 0,8515 г/слгз [28], в зависимости от используемого метода расчета. Значение плотности полностью кристаллического полимера можно найти рентгенографическим методом, определив размеры элементарной ячейки кристалла. Натта [27] приводит плотность полностью кристаллического полипропилена 0,9360 г/слг . Для измерения плотности полимеров можно использовать флотационный метод. [29] или метод электромагнитного поплавка [30, 31]. Последний целесообразно применять в случае волокнистых материалов, так как на поверхности волокон образуются воздушные пузырьки. [c.70]

    В настоящем разделе приводятся результаты исследования методами ИК-спектроскопии, фотолюминесценции (ФЛ), электронного парамагнитного резонанса (ЭПР) и трансмиссионной электронной микроскопии (ТЭМ) синтетических монокристаллов алмаза. От- бирались полногранные кристаллы с зеркально гладкой поверхностью, достаточно прозрачные, что позволяло проводить исследования спектров поглощения. Кристаллы содержали небольшое коли- [c.427]

    Применение мёссбауэровской спектроскопии для изучения поверхности можно проиллюстрировать на примере исследования дисперсных катализаторов Pt—Fe, нанесенных на графитированный углерод [127]. Наблюдаемые спектральные линии разлагали на компоненты с помощью ЭВМ. Снятые при комнатной температуре спектры образцов, полученных восстановлением водородом при 770 К, обычно характеризовались кривыми, которым лучше всего удовлетворяли два квадрупольно расщепленных дублета (рис. 11). Внешний, менее интенсивный дублет с широкими линиями приписан поверхностным атомам, а внутренний дублет с узкими линиями — атомам объемной фазы. Долю поверхностных атомов железа можно оценить по площадям, ограниченным соответствующими линиями, при условии что вероятность испускания без отдачи для атома поверхности и атома объемной фазы одинаковы. В общем случае это не должно выполняться, потому что поверхностные атомы связаны в кристаллите менее прочно. Авторы [127] обошли эту трудность, измеряя зависимость спектральных данных от величины адсорбции газов и используя предположение, что поверхностный атом железа, на котором адсорбирован водород или 28  [c.435]

    Данные исследований единичных кристаллов с помощью таких физических методик, как ИК- и рамановская спектроскопия, измерения абсолютной интенсивности малоуглового рентгеновского рассеяния, требовали участия в образовании неупорядоченной структуры на поверхности ламелей 15% сегментов цепей [55]. [c.43]

    Разрущение кристаллической рещетки фиксируют не только рентгеноструктурным, но и другими методами среди них можно назвать изменение удельной поверхности, объема, электропроводности. С этой же целью используются ИК-спектроскопия и. термический анализ. Термическое разрушение кристалла цеолита обычно сопровождается выделением тепла. Тепловой эффект этой экзотермической реакции и температуру, при которой она происходит, часто удается определить с помощью дифференциального термического анализа. Положение соответствующего экзотермического пика можно использовать как характеристику термостабильности. На рис. 4-2 показана типичная кривая, полученная при дифференциальном термическом анализе. Эндотермический пик (а), наблюдаемый приблизительно при 200° С, связан с выделением воды и других летучих примесей, если они имеются. Первый экзотермический пик 6) соответствует разрушению кристаллического цеолита до аморфного состояния, а второй экзотермический пик в), часто наблюдаемый при более высокой температуре, говорит о перекристаллизации в новую фазу. Природа экзотермического пика (б) рассматривается при обсуждении процессов разрушения структуры. [c.350]

    ЗсЧ последило годы резко возросло применение инфракрасного излучения в физике, химии, биологии и технике. Инфракрасный спектральный анализ позволяет осуществлять количественное определонне состава химических смесей и проводить автоматизацию ряда химических технологических процессов. Важнейшее значение приобрели методы инфракрасной спектроскопии при изучении строения молекул, кристаллов, полимеров, биологических объектов, минералов, а также при изучении энергии химических связей, механизма химических реакций, процессов поглошепия излучения в твердых телах, особенпо в полу-проводииках. Астрономические исследования в инфракрасной области спектра позволяют установить химический состав и строение атмосферы, физические условия, существующие на планетах, в частности, распределение температуры на их поверхности. Инфракрасная аппаратура устанавливается на метеорологических спутниках и космических ракетах. Кроме того, открываются новые области применения инфракрасного излучения в связи с созданием квантово-механических генераторов, работающих в инфракрасном участке спектра. [c.5]

    Методом инфракрасной спектроскопии исследовалась поверхность ряда наполнителей (углеродных саж, аэросила, силиката кальция, карбоната кальция, каолина) и их взаимодействие с различными природными и синтетическими каучуками [102, 103]. Производилась съемка инфракрасных спектров мик-ротомных срезов наполненных каучуков. В случае введения в каучук в качестве наполнителя кремнезема (аэросила) и каолина наблюдалось уменьшение интенсивности полосы поглощения поверхностных гидроксильных групп наполнителей, свидетельствующее об участии этих гидроксильных групп ВО взаимодействии с молекулами каучука. Среди ряда полос поглощения структурных гидроксильных групп каолина (3700, 3650, 3623 и 3400 см- ) наибольшее изменение испытывает полоса поглощения 3700 боковых гидроксильных групп решетки кристаллов каолина. [c.268]

    При взаимодействии частичных дислокаций образуются дефекты упаковки и двойники, представляющие собой двумерные поверхностные дефекты. Энергия образования поверхностей, связанных с дефектами упаковки и двойниками, на 1...3 порядка ниже энергий образования поверхности, разделяющей отдельные зерна кристаллов. В напряженном состоянии кристалла при реализации пластических деформаций могут образоваться дефекты с более высокими энергиями, в частности точечные, на образование которых необходимо затратить энергию 10 ..10 Дж. Изменение структуры вещества при измельчении бывает, как правило, достаточно сложным и обычно анализируется различными методами рентгеноструктурньш анализом, электронной микроскопией и ядерной гамма-резонансной спектроскопией (ЯГРС) [34] и др. [c.141]

    Число известных в настоящее время структур и химических форм, образующихся при хемосорбции на поверхности твердых тел, довольно значительно. Этому мы обязаны в основном применению к изучению двумерных поверхностныхсоединенийдифракции медленных электронов, спектроскопии в видимой и инфракрасной части спектра, электронного парамагнитного резонанса и других современных методов исследования. Часть одних обнаруженных форм имеет близкие аналоги среди неорганических и органических молекул и кристаллов, часть — таких аналогов не имеет. В табл. 1.4 приведены некоторые из этих форм, представляющие интерес для катализа. [c.53]

    Типы адсорбционных ппенок. Адсорбционные пленки принято делить на три основных типа мономолекулярные, полимолекулярные (многослойные) и конденсированные (жидкие). При низких температурах адсорбированные молекулы обычно прочно связаны с центром адсорбции. Эти процессы детально исследованы для пластинчатых кристаллов типа графита, BN, alj и Т.Д., на которых легко получить однородные поверхности. При этом часто образуется двумерная пленка, строение которой определяется структурой кристалла-подложки. Примером таких процессов (называемых двумерной конденсацией) может служить адсорбция ксенона Хе на графите, экспериментальные характеристики которой приведены на рис. 4.3, а. Наблюдаемый фазовый переход аналогичен обычным фазовым переходам газ — твердое тело и отличается от них лишь только тем, что при малой степени заполнения поверхности адсорбированные молекулы достаточно прочно связаны с адсорбентом и не переходят в газообразное состояние. Количество адсорбированного ксенона определяли методом оже-спектроскопии и одновременно структуру пленки изучали методом дифракции медленных электронов. На рис. 4.3, б представлены данные по адсорбции криптона на поверхности измельченного КС1 ( уд = 1 м /г).  [c.77]

    Так как в химической спектроскопии чаще всего используются окошки из ЫаС1, мы ограничим обсуждение главным образом этим материалом. Кристаллы каменной соли, подобно другим кристаллам, расщепляют вдоль плоскости спайности, так как это является единственным способом получить в срезе почти гладкие грани. Плоскости спайности являются теми направлениями в кристалле, в которых связь между атомами слабее всего. Отколов угол пластинки и рассмотрев его, можно легко определить направление плоскостей спайности. Если исходный материал представляет собой вырезанную заготовку, то велика вероятность того, что она была вырезана влажным шнуром вдоль плоскости спайности. Линию, по которой нужно расколоть кристалл, удобно нарезать бритвенным лезвием, используя линейку или угольник. Затем это же лезвие вставляют в сделанную в кристалле щель и бьют по нему маленьким молотком до тех пор, пока кристалл не расколется. Получающиеся в результате раскола поверхности редко бывают совершенными, их еще нужно выровнять шлифованием и отполировать. Если операция раскалывания не проходит идеально, на плоскостях раскола могут произойти изгибы. Это не так страшно, поскольку пластины могут быть выровнены при шлифовке под давлением. Однако это приводит к потерям довольно дорогой соли. [c.87]

    Первые публикации по инфракрасной спектроскопии содержат много примеров поляризационных спектров, т. е. сЯектров поглощения, которые меняются при изменении направления электрического вектора падающего излучения [119]. К ним относятся почти все спектры неорганических кристаллов, которые получали с помощью поляризованного луча, отраженного от зеркальной поверхности аморфного селена [112]. Незадолго до второй мировой войны Иллис с сотрудниками наблюдали эффекты дихроизма в ориентированных полимерах, таких, как фибриллярные белки. Эти наблюдения были сделаны при использовании призмы из кальцита и ограничивались областью до 2 мкм, где расположены обертоны и комбинационные полосы. В гл. 3 показано, что интерпретация этих полос может быть затруднена. Первые важные наблюдения основных полос поглощения ориентированных полимеров в поляризованном излучении проведены Эллиотом и сотр. [39, 40] с помощью вновь разработанного пропускающего поляризатора с пластинами из селена. Впоследствии при исследовании полимерной структуры нашли широкое применение поляризаторы из селена и хлористого серебра [99]. [c.86]

    Полная третичная структура биологической макромолекулы может быть установлена в настоящее время лишь с помощью рентгеновской кристаллографии и некоторых тесно связанных с ней дифракционных методов (гл. 13 и 14). Все эти методы требуют включения молекул в хорошо упорядоченные кристаллические структуры, а это можно сделать лишь в случае некоторых биополимеров. Дело в том, что определенная часть биологических молекул или систем неупорядочена по самой своей природе. Такие системы невозможно исследовать с высоким разрешением с помощью дифракционных методов. Если получить достаточно совершенные кристаллы не удается, можно попытаться исследовать третичную структуру биополимера, используя сочетание ряда менее информативных методов. Электронная спектроскопия и гидродинамические методы (гл. 10-12) дают сведения о размере и форме молекулы. Ряд физических и химических подходов может дать информацию о том, доступны ли определенные звенья для взаимодействия с молекулами раствора. Если такое взаимодействие имеет место, мы можем заключить, что эти звенья расположены преимущественно на поверхности изучаемой структуры, а в противоположном случае — в глубине. Некоторые спектроскопические методы позволяют получить более детальные сведения о третичной структуре. Так, затратив значительные усилия, можно измерить с их помощью расстояние между определенными точками внутри изучаемой структуры. Трудность заключается в том, что при этом удается определить в одном опыте лишь одно из расстояний. [c.25]


Библиография для спектроскопия поверхность кристаллов: [c.13]   
Смотреть страницы где упоминается термин спектроскопия поверхность кристаллов: [c.76]    [c.181]    [c.113]    [c.138]    [c.147]    [c.312]    [c.252]    [c.19]    [c.274]    [c.24]    [c.127]    [c.538]    [c.18]    [c.50]    [c.86]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.252 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Инфракрасная спектроскопия поверхности полимерных кристаллов



© 2025 chem21.info Реклама на сайте