Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация исследуемого вещества в одной из фаз

    Трипропиламин и Ы-этилпиперидин оказались самыми сильными третичными основаниями, которые удалось подобрать, а кетоны, взятые в качестве растворителей, лучше всего усиливали осноёность и кислотность исследуемых веществ. Тем не менее единственными кислотами, которые можно было титровать в этих условиях, оказались малеиновая и фталевая [первая константа диссоциации и 10 соответственно (в воде) вторые водороды диссоциированы слишком слабо, поэтому на кривых титрования наблюдается только один перегиб]. Были исследованы кислоты с константами диссоциации 10 —10 (в воде), но ни одну из них нельзя было титровать в этих растворителях третичными основаниями. Таким образом, применимость метода ограничена кислотами с константой диссоциации 10 или выше, и лишь такие кислоты могут мешать определению. Были исследованы кислоты уксусная (К=10- ), бензойная (6-10 ), янтарная (7-10 ) и камфарная. Малоновая кислота (первая константа диссоциации 10 ) также титруется, однако ее ангидрид встречается столь редко, что в таком определении нет необходимости. [c.195]


    Применение Бодлендером принципа цепных реакций к процессам аутоксидации несомненно является удачным углублением теории Баха-Энгле-ра в определенных случаях. Дальнейшим этапом развития этих идей является разработанная Н. Н. Семеновым теория разветвляющихся цепных реакций. Но далеко не все реакции аутоксидации носят цепной характер, как это показывает пример окисления трифенилметила. Из того, что непременным условием всякого окислительного процесса при обыкновенной температуре является наличие в окисляющемся веществе свободной энергии в количестве, достаточном для активирования молекулы кислорода, вытекает, что нельзя делать заключения на основании процесса окисления насыщенного соединения при повышенной температуре о механизме окисления его при обыкновенной температуре, ибо энергетическое состояние насыщенного соединения при повышенной температуре далеко не то, что при обыкновенной. Исследуя диссоциацию насыщенных углеводородов при повышенной температуре в отсутствии кислорода, Нюит нашел, например, что гексафенилэтан около 500° распадается на метан, водород и ненасыщенные соединения. Нет никакого сомнения, что активирование молекулы насыщенного углеводорода, начало его распада на ненасыщенные элементы происходит при еще более низкой температуре. А из этого следует, что насыщенные углеводороды находятся при повышенной температуре в таком же состоянии, как ненасыщенные при обыкновенной, и с молекулярным кислородом реагируют, как последние, т. е. присоединяют молекулу с первичным образованием перекиси. Механизм первоначальной реакции в обоих случаях один и тот же, но дальнейший ход ее различен, так как образовавшаяся перекись реагирует при повышенной температуре быстрее и иначе, чем при обыкновенной. То же относится и к другим продуктам реакции. Поэтому при горении водорода из первично образовавшейся перекиси водорода может получиться гидроксил, который нри действии атомного водорода на молекулярный кислород при обыкновенной температуре не образуется. [c.133]


Смотреть главы в:

Практические работы по физической химии -> Диссоциация исследуемого вещества в одной из фаз




ПОИСК







© 2025 chem21.info Реклама на сайте