Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность небензоидных ароматических соединений

    Концепция ароматичности и свойства ароматических молекул обсуждаются в целом ряде современных монографий и серьезных статей П—9] см., например, сборник [6,6], в котором содержится подробнейший обзор современного состояния этих вопросов. В прошлом одним из критериев, использовавшихся для отнесения какой-либо системы к разряду ароматических, была ее необычная реакционная способность, например способность к замещению, а не к присоединению, или устойчивость по отношению к окислению. Однако в настоящее время все сходятся на том, что реакционная способность химического соединения (о которой можно судить на основании рассмотрения переходного состояния) является очень плохим критерием ароматичности. Скорее, ароматичность следует рассматривать как свойство, связанное исключительно с основным состоянием системы и обнаруживаемое по необычно высокой устойчивости молекулы (т. е. по низкой энтальпии основного состояния), которая обусловлена делокализацией ее я-электронов. Ароматическими могут быть молекулы карбоциклических или гетероциклических соединений, включая сидноны или мезоионные соединения [5] они могут быть также нейтральными или заряженными. Вообще говоря, все ароматические молекулы подразделяются на бензоидные (бензол, нафталин и т. д.) и небензоидные (все остальные азулен, анион циклопентадиена, боразины, азепины, трополоны и т. д.). Экспериментальные критерии ароматичности описаны ниже. [c.151]


    Реакционная способность небензоидных ароматических соединений [c.521]

    РЕАКЦИОННАЯ СПОСОБНОСТЬ НЕБЕНЗОИДНЫХ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ [c.520]

    Реакционную способность ненасыщенных углеводородов — алке-нов, алкинов и ароматических углеводородов — в катодных процессах можно сопоставить с энергией низшей незаполненной молекулярной орбитали. Состав образующихся при восстановлении устойчивых продуктов зависит от ряда факторов, в том числе от структуры деполяризатора и от реакционной среды. Заметим в этой связи, что выделение небензоидных ароматических соединений в особый раздел сделано лишь для удобства подачи материала, а не вследствие каких-либо особенностей соединений этого класса. [c.97]

    Превращения углеводородов, содержащих 9—18 атомов углерода в цикле, впервые исследовал Прелог с сотр. [196], над Рё Катализатором при 400 °С. Реакционная способность указанных циклоалканов зависела главным образом от размера цикла при этом образовывались различные арены, в том числе полициклические и небензоидные ароматические соединения — инден, азу-лен, нафталин, фенантрен, трифенилен и др. Учитывая число углеродных атомов в исходном цикле и основываясь на характере каталитических превращений последнего, авторы [196] разделили исследованные углеводороды на четыре группы I (С5+47,) — 9H18, 13H26, С17Н34  [c.152]


Смотреть главы в:

Теоретические основы органической химии -> Реакционная способность небензоидных ароматических соединений




ПОИСК





Смотрите так же термины и статьи:

Ароматические соединения небензоидные



© 2024 chem21.info Реклама на сайте