Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концепция ароматичности Хюккеля

    КОНЦЕПЦИЯ АРОМАТИЧНОСТИ ХЮККЕЛЯ 5 [c.948]

    КОНЦЕПЦИЯ АРОМАТИЧНОСТИ ХЮККЕЛЯ [c.952]

    Следует подчеркнуть достоинство действия рассматриваемых правил, т. е. фактически обобщенной концепции ароматичности для циклических систем типа Хюккеля и Мебиуса. В отличие от метода корреляционных диаграмм, требующего наличия элементов симметрии для переходного состояния реакции, данный подход свободен от указанного ограничения. [c.508]


Рис. 20. Иллюстрация концепции ароматичности с точки зрения метода МО — ЛКАО Хюккеля для трех- (а), четырех- (б), пяти- (в), шести- (г), семи- (д) и восьмичленных (е) циклов, состоящих из Рис. 20. Иллюстрация концепции ароматичности с <a href="/info/249986">точки зрения</a> метода МО — <a href="/info/1918938">ЛКАО Хюккеля</a> для трех- (а), четырех- (б), пяти- (в), шести- (г), семи- (д) и восьмичленных (е) циклов, состоящих из
    Ясная концепция характерных черт химического поведения ароматических молекул эмпирически была развита очень давно, а в двадцатых годах нашего столетия начала интерпретироваться и находить свое выражение в понятиях электронных теорий химии, развитых Ингольдом [27] и Робинсоном [4]. Возникновение понятия ароматичность связано с химическим поведением некоторых соединений в самых разнообразных реакциях, а также, в некоторой степени, с физическими свойствами, такими, например, как диамагнитная восприимчивость, характерными для ароматических молекул. Ароматический характер обычно связывался с различными типами реакционной способности, а не со свойствами изолированной молекулы в ее основном состоянии, и наиболее ранняя удовлетворительная теория, а именно теория мезомерии, подчеркивала эту типично химическую точку зрения. Затем, в короткий период около 1930 года, история которого хорошо известна, Хюккель, Полинг и другие показали совместимость теории мезомерии и ароматического секстета с квантовой физикой электронов. Исходным пунктом являются два основных метода приближенного количественного описания ароматических систем метод валентных схем (ВС) и метод молекулярных орбит (МО), основные достоинства которых в том, что они хорошо обоснованы с физической точки зрения и что при помонди их можно вычислить термохимическую энергию резонанса — величину, которая может быть измерена. Энергия резонанса является свойством основного состояния изолированной молекулы, оказывающим лишь второстепенное влияние на реакционную способность, и концентрирование на ней внимания типично для физической точки зрения. В теории ароматичности центр тяжести сместился с химического поведения на физические свойства, и это отражает значительно большие успехи (по крайней мере вплоть до последнего времени) полуколичествен- [c.7]


    Мы говорили выше об эффективности простьк качественных концепций (типа стерических препятствий, индутсгивного эффекта, эффектов сольватации/десольватации и т.п.), повседневно применяемых в органической химии. Наиболее распространенные из них появились на свет как обобщения обширного эмпирического материала, накапливавшегося на протяжении десятилетий трудами поколений химиков всего мира. Квантовая. х]4мия способна на теоретической, неэ.мпирической основе порождать концепции такого же уровня простоты и удобства в применении. Выразительными примерами могут служить концепция ароматичности Хюккеля (правило 4л +2 ) и правила Вудворда—Хоффмана (сохранение орбитальной симметрии). Мы беремся утверждать, что вклад этих результатов в развитие органической химии несравненно более значителен, чем вклад всех достижений расчетных методов, вместе взятых. Их сила именно в простоте и общедоступности применения, в том, что они позволяют с единой точки зрения не только интерпретировать огромный фактический материал, но и уверенно предсказывать новые явления. Прийти к подобным концепциям на чисто эмпирической основе, а тем [c.547]

    Концепция ароматичности бензола хорошо знакома и относительно проста. Различие между бензолом, с одной стороны, и алкенами, с другой, хорошо известно алкены вступают в реакции присоединения электрофилов, таких, как бром, в то время как реакции бензола с такими реагентами требуют гораздо более жестких условий и практически всегда проходят как реакции замещения. Такое различие определяется циклической природой шести я-электронов в бензоле, которые образуют сопряженную молекулярную орбиталь, термодинамически гораздо более стабильную, чем соответствующая нециклическая сопряженная система. Дополнительная стабилизация приводит к уменьшению тенденции к реакциям присоединения и увеличению тенденции вступать в реакции замещения, поскольку в последнем случае происходит сохранение циклической сопряженной системы в продукте реакции. Общее правило, предложенное Хюккелем в 1931 г., заключается в том, что соединение ароматично, если в образовании его циклической сопряженной системы участвует 4я + 2 элекгронов, т. е. 2, 6, 10, 14 и т. д. л-электронов. Наиболее распространены мо-ноциклические ароматические и гетероароматические системы, содержащие шесть л-электронов. [c.15]

    Для того чтобы избежать уменьшения термодинамической стабильности при делокализации я-электронов, циклооктатетрасну энергетически выгоднее принять строение неплоского полиена. Неплоский полнен вообще не может обладать ароматическими свойствами и не подчиняется правилу ароматичности Хюккеля для плоских моноциклических сопряженных полиенов (см. ниже). Циклооктатетраен представляет собой типичный ненасыщенный углеводород, в котором чередуются двойные и одинарные связи. Циклооктатетраен неплоский, потому что он неароматичен. Распространенное обратное утверждение неароматичен, потому что неплоский) неверно, поскольку в этом случае причина и следствие меняются местами. Таким образом, теория Хюккеля обнаруживает глубокое различие в электронной конфигурации четырех-, шести- и восьмиэлектронных я-систем и подцерживает концепцию ароу атического секстета я-электронов 334 [c.334]

    Концепция ароматичности, н в первую очередь, ароматического секстета электронов, была развита для то-го, чтобы отразить некоторые аспекты химического поведения определенного класса молекул, в особенности относящиеся к их реакционной способности. На язык электронных представлений она была впервые переведена в теориях химии ароматических молекул, развитых Ингольдом [1] и Робинсоном [2]. Позднее, около 1930 г., Хюккелем, Полингом и другими было показано соответствие этих теорий квантово-физическим представлениям об электронах. С тех пор, и все в большей степени, ароматичность ассоциировалась одновременно с физическими свойствами молекул (термохимической энергией резонанса, диамагнитной восприимчивостью) и с типично химическими свойствами, связанными с реакциями и реакционной способностью. Кроме того, теоретически предсказанная связь между делокализацией тс-электронов и ароматическими свойствами привела к осознанию того, что ароматичность можно ожидать во всех случаях, когда условия стереохимии, наличие пригодных для использования орбит и число электронов делают возможной делокализацию электронов в циклической системе. С этой точки зрения важен не тип атомов, участвующих в делокализованной системе, а тип орбит. Можно рассматривать 1,3, 5-триазин и боразол (ВзНзНб) как вещества, имеющие качественно тот же ароматический характер, что и бензол, хотя и слабо проявляющийся. Дальнейшее расширение понятия приводит к тому, что трополон (I) [3] можно рассматривать как ароматическую систему, а циклопентадиенильные кольца в ферроцене (И) как обладающие ароматичностью в результате образования комплекса. [c.31]


Смотреть страницы где упоминается термин Концепция ароматичности Хюккеля: [c.295]    [c.346]   
Органический синтез (2001) -- [ c.547 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматичность

Хюккель



© 2025 chem21.info Реклама на сайте