Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конечные разложения Лаггера и оптимизация методом Гаусса

    Можно сразу же возразить, что для такого выбора параметров а и я предварительно должны быть известными три первых момента Х1, хг, Хз. Но это не представляет серьезного препятствия, поскольку уже при небольшом опыте нетрудно подобрать соответствующие начальные приближения а и , рассчитать с их помощью три первых момента и затем воспользоваться полученными приближенными значениями моментов для более точного выбора величин а и 5 с помощью уравнений (14-56). Поскольку величины з ограничиваются приведенными в таблицах дискретными значениями, первое из уравнений (14-56) может выполняться лишь приближенно, но второе уравнение можно получить точно, коль скоро величина уже подобрана. Можно рекомендовать для первой итерации значение 5 = 1 и любое значение для величины а, которое не выводит выбранные точки за пределы экспериментальной области исследованных молекулярных весов. Если читатель проследит за всеми стадиями численного расчета в приведенном в разд. III,Д примере, то он более отчетливо уловит механизм процесса итераций, чем при ознакомлении с приведенным здесь описанием. Представление функции конечным разложением Лаггера, оптимизацию этого разложения по методу интегрирования Гаусса и выбор оптимальных значений пересчетных параметров можно провести до конца и получить оценки для пяти моментов экспериментальной кривой распределепия Л1,. . ., цз- Однако нулевой момент [c.387]


    В. Конечные разложения Лаггера и оптимизация методом Гаусса [c.385]


Смотреть главы в:

Фракционирование полимеров  -> Конечные разложения Лаггера и оптимизация методом Гаусса




ПОИСК





Смотрите так же термины и статьи:

Гаусса

Лаггера

Метод оптимизации



© 2024 chem21.info Реклама на сайте