Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Критерии направленности в неизолированных системах

    Как показано в 20, в изолированных системах энтропия может только увеличиваться и достигать своего максимума, когда система находится в равновесии. Поэтому она и используется для суждения о направлении самопроизвольных процессов в таких системах. Однако в естественных условиях подавляющее большинство процессов протекает в неизолированных системах. По этой причине для них потребовалось ввести другие критерии равновесия. Направление процессов при этом можно характеризовать работой, которую они могут совершать при определенных условиях. [c.75]


    Следовательно, энтропия является критерием направления процесса. Критерием неосуществимости процессов служит неравенство Л5<0. В неизолированной же системе могут протекать обратимые и необратимые процессы с уменьшением энтропии. [c.230]

    На вопрос о том, возможен или невозможен процесс при данных условиях, дает ответ второе начало термодинамики, которое, как и первое начало, оперирует лишь с начальным и конечным состояниями системы. Чтобы по заданным начальному и конечному состояниям системы определить направление перехода системы из одного состояния в другое при данных условиях, надо найти такие термодинамические свойства системы, которые при любом самопроизвольном процессе при данных условиях или увеличиваются, или уменьшаются, причем при равновесном состоянии эти свойства достигают соответственно максимального или минимального значений. Второе начало термодинамики показывает, что такими свойствами системы являются в общем случае энтропия (5) и в частных случаях изохорный (F) и изобараный (Z) потенциалы. Энтропия является критерием возможности направления и предела течения процессов в изолированных системах, а изохорный потенциал при V, Т — onst и изобарный потенциал при Р, Т = onst — в неизолированных системах. Прежде чем перейти к более подробному анализу этих свойств системы, необходимо рассмотреть содержание и смысл второго начала термодинамики. [c.82]

    Если система изолирована, то при протекании в ней обратимых процессов энтропия не меняется, так как уже достигла своего максимального значения, а при необратимых процессах энтропия растет. Когда необратимый процесс приводит изолированную систему к состоянию равновесия, ее энтропия достигает максимума. Следовательно, энтропия является критерием направления процесса. Критерием неосуществимости процессов служит неравенство А5<0, т. е. не. может иметь место процесс, протекание которого в изолированной системе связано с уменьщением энтропии. В неизолированной же системе могут протекать процессы обратимые и необратимые с уменьшением энтропии. Может показаться, что решение практических задач с применением энтропии невозможно, поскольку для реальных необратимых процессов в выражении Д5<0 фигурирует знак неравенства. Но как нами было уже показано, необратимый процесс всегда можно представить квазиста-тическим, и в этом случае вычисление А5 не представляет затруднений, так как изменение энтропии не зависит от характера превращения. Только поэтому термодинамический метод и используется для изучения равновесных и квазистати-ческих процесов. [c.25]


    Как уже отмечалось, в изолированных системах энтропия может только увеличиваться и при равновесии достигать максимума. Поэтому ее изменение может служить критерием, указывающим направление процессов именно в таких системах. Однако на практике большинство процессов протекает в неизолированных системах. Действие почти всех промышленных агрегатов связано с теплообменом и изменениями объема. Поэтому для таких незамкнутых систем целесообразно выбирать другие критерии равновесия. Возможность или невозможность процессов при этом связывается с работой, которую они могли бы произвести. [c.47]


Руководство по физической химии (1988) -- [ c.9 , c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Критерии направленности процессо в неизолированных система



© 2025 chem21.info Реклама на сайте