Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О возможности и направлении самопроизвольного протекания J процессов

    Кроме тех свойств энтропии, о которых говорилось, она является критерием возможности и направления процессов, а также состояния термодинамического равновесия в изолированных или адиабатно-изолированных системах. Если в изолированной системе протекает самопроизвольный необратимый процесс, то, как следует из (II, 104), энтропия возрастает. Условие (II, 104) является условием осуществимости данного процесса в изолировашюй системе. Процессы, для которых энтропия у.мепьшаегся, т. е, Д5<0, неосуществимы в изолированных системах. Если процесс возможен в прямом и обратном направлениях, то в изолированной системе он будет протекать в том направлении, которое сопровождается увеличением эптропни. При протекании процессов в изолированной системе энтропия ее увеличивается и одновременно система приближается к состоянию равновесия. Когда система достигнет состояния равновесия, то все процессы прекратятся, и энтропия будет [c.115]


    О возможности и направлении самопроизвольного протекания процессов. Существуют два термодинамических метода рассмотрения этих вопросов, строго связанные между собой. Первый метод основан на том, что не только величина работы (см. 66), но и величины различных форм энергии или перехода ее могут рассматриваться как произведение двух величин — фактора интенсивности и фактора емкости (или экстенсивности). Фактор интенсивности характеризует напряжение или потенциал данного вида энергии, как, например, давление газа, температура тела, потенциал электрического заряда. Для факторов интенсивности характерно, что они не зависят от количества вещества, количества электричества, объема и т. д., носящих общее название факторов емкости. Возможность, направление и предел самопроизвольного протекания процессов перехода энергии или вещества от одной части системы к другой зависят только от соотношения факторов интенсивности. [c.206]

    Как показывается в термодинамике, можно ввести такие функции, которые отражают влияние на направление протекания процесса как тенденции к уменьшению внутренней энергии, так и тенденции к достижению наиболее вероятного состояния системы. Знак изменения подобной функции при той или иной реакции может служить критерием возможности самопроизвольного протекания реакции. Дня изотермических реакций, протекающих при постоянном давлении, такой функцией является энергия Гиббса О. [c.182]

    Самопроизвольное протекание процесса возможно только в направлении, при котором происходит уменьшение Р (при постоянных температуре и объеме) или С (при постоянных температуре и давлении), а состоянию равновесия отвечает минимальное значение этих потенциалов. Константа равновесия связана с изменением этих потенциалов соотношениями  [c.122]

    Энергия Гиббса в изобарно-изотермических условиях не изменяется при обратимом процессе и убывает при необратимом. Отсюда следует, что по изменению величин /1 и С можно судить о направлении самопроизвольных процессов при постоянстве Т н V, Т п р (в противоположность изменению энтропии при 7 = сопз1 и У = соп51 в изолированной системе). Термодинамические потенциалы — более выгодные критерии направленности процессов. Если критерием возможности протекания самопроизвольных процессов в закрытых системах являются условия, выражаемые (2.30) и (2.31), то пределом протекания процессов служат соотношения [c.45]


    По уравнению изотермы химической реакции можно рассчитать изменение энергий Гиббса и Гельмгольца при соответствующих условиях, т. е. определить возможность, направление и предел протекания самопроизвольного процесса. [c.53]

    Термодинамика представляет собой научную дисциплину, которая изучает 1) переход энергии из одной формы в другую, от одной части системы к другой 2) энергетические эффекты, сопровождающие химические и физические процессы 3) возможность и направление самопроизвольного протекания процессов. Наряду с учением о строении вещества термодинамика является теоретической основой современной неорганической химии (химическая термодинамика). [c.172]

    Позднее, с открытием и исследованием электрической, лучи стой, химической и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества [c.175]

    Таким образом, этот метод может быть выражен следующим положением самопроизвольное протекание процессов взаимодействия между различными частями системы возможно только в направлении выравнивания фактора интенсивности (температуры, давления, электрического потенциала, химического потенциала и др.) для всех частей системы, достижение одинакового значения этого фактора является пределом самопроизвольного течения процесса в данных условиях и, следовательно, условием равновесия. [c.207]

    Это неравенство для изолированной системы определяет, что спонтанные процессы в них проходят только с конечной скоростью, сопровождаемые возрастанием энтропии. Равновесные процессы протекают без изменения энтропии на каждой стадии, то есть 51=5г. Для необратимых процессов по знаку изменения энтропии можно определить тип процесса и направление его протекания. Для равновесных процессов по знаку изменения энтропии также можно предсказывать направление протекания процесса при данном изменении Р, Т и V. Так, если Д5>0, то она характеризует возможность самопроизвольного протекания процесса, при Д5< 0 возможно протекание процесса только при затрате работы. Последние процессы не могут быть осуществлены в изолированной системе и они не изучаются в термодинамике необратимых процессов и классической термодинамике. Возрастание энтропии Клаузиус распространил от изолированных систем на Вселенную и высказал предположение о возможной [c.96]

    Термодинамика изучает законы взаимных превращений различных видов энергии, состояния равновесия и их зависимость от различных факторов, а также возможность, направление и предел протекания самопроизвольных процессов. Термодинамика использует свой особый так называемый феноменологический метод подхода к решению тех или иных вопросов. Сущность этого метода состоит в обобщении опытных данных в виде трех законов — начал термодинамики — с их дальнейшим применением к различным вопросам и конкретным условиям без учета детального строения рассматриваемых систем. Особенностью термодинамического метода является его применимость только к системам, состоящим из очень большого числа отдельных частиц, а также определение лишь возможности рассматриваемых процессов. Вопрос о скорости процесса термодинамическим методом также не может быть рассмотрен. [c.55]

    I и т. д., каков предел самопроизвольного протекания процессов, величина возможной работы при таких процессах. Все это позволяет определить те внешние условия, при которых интересующий нас процесс мог бы протекать в нужном направлении и в требуемой степени. [c.92]

    Решение вопроса о направлении самопроизвольных процессов, о возможности таких процессов и пределе их протекания может осуществляться по-разному. Один из используемых для этих целей методов, назовем его методом факторов интенсивности, состоит в следующем. Выделим среди термодинамических величин, характеризующих свойства термодинамической системы, две различные группы. Это так называемые интенсивные величины, которые не зависят от количества вещества или массы системы, а при соприкосновении систем имеют тенденцию к выравниванию, и экстенсивные величины, пропорциональные количеству вещества или массе, которые при [c.81]


    Вероятность состояния оценивается энтропией, особой функцией состояния, связанной с теплотой. В изолированной системе, где общая энергия постоянна, развитие любого самопроизвольного процесса обусловлено только энтропийным фактором. В этих условиях энтропия — универсальный критерий возможности, направления и предела протекания процесса. В закрытых и открытых системах в общем случае изменяется как энергия, так и энтропия, и о возможности самопроизвольного процесса судят по другим функциям состояния. [c.90]

    Выяснение возможных направлений процессов на основании расчета изменений энтропии часто связано с трудностями, которые заключаются в том, что необходимо рассматривать замкнутую систему. Поэтому приходится рассчитывать не только изменение энтропии самой интересующей нас системы, но и изменение энтропии окружающей ее среды. Объем этой среды должен быть настолько большим, чтобы за его границами уже не происходило никаких изменений, связанных с рассматриваемым процессом. Для преодоления этого затруднения необходимо найти какой-либо иной критерий возможности или невозможности самопроизвольного протекания процесса в заданном направлении. В качестве такого критерия используется работа. Действительно, при самопроизвольном процессе работа может быть только положительной. Если работа отрицательна, то это значит, что система изменяется под влиянием работы, затрачиваемой извне, а такой процесс уже не является самопроизвольным. [c.61]

    Классическая термодинамика равновесного состояния рассматривает возможность, направление и предел самопроизвольного протекания процессов перехода вещества или энергии от одной части системы к другой, но не дает ответа на вопрос, будет ли в действительности и с какой скоростью протекать процесс. Для распространения термодинамического метода на равновес- [c.142]

    Второй закон термодинамики дает ответ на вопрос о том, какие из процессов могут протекать самопроизвольно (т. е. без затраты работы извне) при заданных температуре, давлении, концентрации и т. д., каков предел самопроизвольного протекания процессов, величина возможной работы при таких процессах. Все это позволяет определить те внешние условия, при которых интересующий нас процесс мог бы протекать в нужном направлении и в требуемой степени. [c.93]

    Таким образом, первый из указанных методов может быть выражен следующим положением, устанавливаемым вторым законом термодинамики самопроизвольное протекание процессов взаимодействия между различными частями системы возможно только в направлении выравнивания фактора интенсивности (температуры, давления, электрического потенциала, химического потенциала и др.) для всех частей системы, достижение одинакового значения э ого фактора является пределом самопроизвольного течения процесса в данных условиях и, следовательно, условием равновесия. Этот метод неприменим к системам однородным или вообще к процессам, протекание которых не вызывается неоднородностью системы, он неприменим, в частности, к гомогенным химическим реакциям. [c.276]

    AS — величина положительная), а свободная энергия системы еще более уменьщается. Наоборот, если при процессе растворения энтропия системы уменьшается, то изменение свободной энергии меньше величины теплового эффекта АН и возможность самопроизвольного протекания процесса в данном направлении также уменьшается. [c.84]

    Предмет химической термодинамики. Термодинамика представляет собой научную дисциплину, которая изучает I) переходы энергии из одной формы в другую, оТ одной части системы к другой, 2) энергетические эффекты, сопровождающие различные физические или химические процессы, зависимость их от условий протекания процессов и 3) возможность, направление и пределы самопроизвольного (т. е. без затраты работы извне) течения самих процессов в рассматриваемых условиях. Термодинамика базируется на двух основных законах, называемых иначе первым и вторым принципами термодинамики. [c.178]

    Второй закон термодинамики устанавливает возможность, направление и предел протекания самопроизвольных процессов. [c.79]

    Более общим методом, пригодным для определения возможности, направления и предела протекания самопроизвольных процессов, является метод термодинамических функций. Он заключается в том, что для каждых конкретных условий существования термодинамической системы подбирается вполне определенная термодинамическая функция так, что ходу самопроизвольного процесса соответствует изменение выбранной функции в сторону увеличения или уменьшения, а достижению состояния равновесия — ее максимальное либо минимальное значение. [c.82]

    Заканчивая раздел Химическая термодинамика , отметим, что наиболее важным из рассмотренных здесь вопросов является определение возможности, направления и предела протекания самопроизвольных процессов. [c.141]

    Ранее был рассмотрен термодинамический метод изучения химических процессов, позволяюш,ий осуществлять расчет химических равновесий и устанавливать направление возможного протекания процессов в тех или иных условиях. Термодинамические данные важны в том отнощении, что самопроизвольный ход определенной реакции в заданных условиях возможен лишь в направлении термодинамического равновесия. Никакие факторы, влияющие на скорость процесса, скажем, перемешивание или введение катализатора, не могут повернуть реакцию в обратном направлении. Поэтому и все усилия, направленные на осуществление такой реакции, являются бесплодными. Однако знание возможного направления реакции и даже какой-либо термодинамической величины, количественно характеризующей степень отклонения системы от состояния равновесия (например, ЛО), не позволяет сделать никаких заключений о действительной скорости этой реакции в определенных условиях. [c.253]

    Если в результате протекания процессов в прямом и обратном направлениях в системе или в окружающей среде останутся не исчезающие изменения, то процесс называют необратимым. Такой процесс возможно реализовать в обратном направлении только с применением внешних воздействий, как правило, оставляющих изменения в системе или среде. Необратимые процессы обычно идут самопроизвольно и только в одном направлении — в сторону приближения к равновесному состоянию и прекращаются, когда такое состояние будет достигнуто. Например, переход теплоты от более нагретого тела к менее нагретому, кристаллизация переохлажденной жидкости или испарение перегретой ж] дкд щ взаимная диффузия газов или жидкостей и др. [c.94]

    Важной задачей химии является изучение процессов превращения веществ — химических реакций. В данной главе будут рассмотрены энергетические эффекты и направление химических реакций, возможность или невозможность самопроизвольного протекания химических процессов. Так как эти вопросы входят в круг задач, изучаемых химической термодинамикой, то вначале рассмотрим некоторые общие понятия этой науки внутренняя энергия и энтальпия системы термохимические законы и расчеты энтальпия образования химических соединений и т. п. [c.84]

    Термодинамика позволяет определять возможность и направление самопроизвольного протекания процессов, количество выделяемой (или поглощаемой) энергии, но не дает сведений о том, с какой скоростью будут протекать эти процессы. Изучению скорости процессов посвящеп самостоятельный раздел физической химии — химическая кинетика. [c.13]

    Высокая разрешающая способность электронного микроскопа открыла новые возможности в изучении такого важного явления, как поверхностная диффузия на твердых телах. Уже в ранних работах по прикладной электронной микроскопии был отмечен ряд качественных наблюдений в этом отношении. Так, Арденне [55] наблюдал значительное укорочение и утолщение игл на поверхности металлического цинка после хранения препарата в течение нескольких суток в вакууме и другие аналогичные явления, свидетельствующие о самопроизвольном протекании процессов в направлении уменьшения поверхностной энергии высокодисперсных систем. Тильш [56] описал рекристаллизацию нестабильных кристаллов хлористого калия дендритной формы, полученных быстрым испарением раствора на пленке-цодложке, в устойчивые кубические кристаллы в результате выдерживания препарата в атмосферных условиях. [c.201]

    Рассмотрим еше один пример рас-Движущая ипа —.pgQpg,JJ g поваренной соли. Энергия еепорядок кристалличбской решетки хлорида натрия равна 186 ккал, а энергия гидратации ионов N3+ и С1" составляет в сумме 184 ккал. Баланс не в пользу растворения, а между тем поваренная соль растворяется в воде и неплохо. В чем же причина Не ошибочны ли изложенные представления Нет, причина заключается в следующем. Рассуждая об энергетических изменениях в системе, мы до сих пор обращали внимание только на тепловые эффекты процессов, т. е. на энтальпию соответствующих стадий, и не учитывали, что на самом деле возможность самопроизвольного протекания процесса и его направление определяется в общем случае не изменением теплосодержания, а изменением свободной энергии системы. [c.83]

    Как показывается в термодинамике, можно ввести такие функцни, которые отражают влияние на направление протекания процесса как тенденции к уменьшению внутренней энергии, так и тенденции к достижению наиболее вероятного состояния системы. Знак изменения подобной функции при той или иной реакции может служить критерием возможности самопроизвольного протекания реакции. Для изотермических реакций, протекающих при постоянном давлепни, такой функцией является энергия Гиббса О, называемая так>ке и зобарпо -изотермическим потенциалом, изобарным потенциалом или свобод кой энергией прн постоянном давлении. [c.199]

    Знак изменения энергии Гиббса характеризует направление самопроизвольного или несамопроизвольного протекания процесса при данных условиях, а равенство (<ЗАОг )р,г=0 определяет равновесное состояние в смеси химических веществ, между которыми возможно химическое взаимодействие. Равновесие имеет динамический характер, то есть при равновесии ипр= [c.192]

    Для изолированных систем энтропия является критерием, которым характеризуется возможность направления и предел самопроизвольного протекания любого физического и химического процесса. Согласно законам термодинамики в изолированных системах могут протекать только такие процессы, при которых энтропия систем возрастает, в то время как внутренняя энергия остается неизменной. Процесс может идти самопроизвольно до тех пор, пока энтропия не достигнет максимального для данных условий значения. Так, переход теплоты от более нагретого тела к менее нагретому сопровождается возрастанием энтропии системы, которая достигнет максимального значения тогда, когда температуры обоих тел сравняются. Подобным же образом энтропия газа в двух сосудах возрастает при переходе газа из сосуда с большим давлением в сосуд с меньшим давлением н достигает максимального значения, когда давления газа в обоих сосудах срав- [c.85]

    Согласно второму закону термодинамики, направление термодинамического процесса определяется убылью термодинамического потенциала системы. В замкнутой системе при Т = onst и Р = onst изменение его возможно лишь при изменении состава системы, т. е. в результате химических превращений. Следовательно, любой самопроизвольный химический процесс сопровождается убылью термодинамического потенциала системы и глубина протекания этого процесса может быть количественно охарактеризована величиной его убыли. Для выявления изменения термодинамического потенциала системы, происходящего в результате химического процесса, воспользуемся понятием химического потенциала компонента — [c.132]

    Так как очевидно, что невозможно искать критерий направления отдельно для любого мыслимого конкретного процесса в любой системе, то логическая природа второго начала термодинамики такова рассматривается какой-нибудь один по возможности простой процесс, для которого многовековой практический ошлт всего человечества позволяет четко указать, какое направление самопроизвольно, а какое несаыопроизвольно. После этого принимается в качестве постулата утверждение о неосуществимости в природе самопроизвольного протекания рассматриваемого процесса в одном из направлений. Опираясь на этот постулат, доказывается, что в природе существует некоторая функция состояния, знак изменения которой в любом мыслимом процессе, а не только в том, который был выбран для формулировки исходного постулата, позволяет однозначно определять, какие прсцессы самопроизвольны, а какие нет. [c.35]

    При изучении химических взаимодействий очень важно оценить возможность или невозможность их самопроизвольного протекания при заданных условиях, выяснить химическое сродство веществ. Должен быть критерий, при помощи которого можно было бы установить принципиальную осуществимость, направление и пределы самопроизвольного течения реакции при тех или иных температурах и давлениях. Первый закон термодинамики такого критерия не дает. Тепловой эффект реакции не определяет направления процесса самопроизвольно могут протекать как экзотермические, так и эндотермические реакции. Так, например, самопроизвольно идет процесс растворения нитрата аммония ЫН4ЫОз (к) в воде, хотя тепловой эффект этого процесса положителен А/Йэв > О (процесс эндотермический), и в то же время невозможно осуществить при Т = 298,16 К и р = = 101 кПа синтез к-гептана С,Н1в (ж), несмотря на то, что стандартная теплота его образования отрицательна АЯгэа обр <0 (процесс экзотермический). [c.104]


Смотреть страницы где упоминается термин О возможности и направлении самопроизвольного протекания J процессов: [c.187]    [c.317]    [c.208]    [c.82]   
Смотреть главы в:

Краткий курс физической химии Изд5 -> О возможности и направлении самопроизвольного протекания J процессов




ПОИСК





Смотрите так же термины и статьи:

Направление самопроизвольных процессов

Процесс направленность

Процесс самопроизвольный

Процессы направление



© 2025 chem21.info Реклама на сайте