Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомные объемы газов

    После Международного конгресса. химиков в Карлсруэ, деятельное участие, в котором принимал Менделеев, были извлечены из забвения работы. Авогадро и Жерара, пользуясь которыми можно определять относител ,ные веса атомов и молекул. На основании закона. Лвогадро (в равных объёмах газов при одинаковых те.мпературах и давлениях содержится одинаковое число молекул) Же-рар вывел простую формулу, дающую возможность опре делять величину атомного веса элементов на основании простого соотношения между молекулярным весом и плотностью вещества в газообразном состоянии. Этот способ был успешно применён для определения атомных весов многих элементов, плотность которых легко измерима. Закон Авогадро—Жерара давал в руки химиков возможность, определяя относительные атомные веса, фиксировать разницу между отдельными атомами. Были найдены также и другие способы определения атомных весов, например по теплоёмкости. [c.65]


    Ещё большую роль при реакциях в газовом разряде играют стенки той аппаратуры, в которой происходит реакция в разряде. Подобно тому как в обычных разрядах при низких давлениях газа на стенках идёт постоянная рекомбинация положительных ионов и электронов, при разложении молекулярных газов в разряде на атомные на стенках происходит рекомбинация атомов, лимитирующая концентрацию атомарного газа. Особенно сильно рекомбинация атомных газов происходит на металлических поверхностях. На процесс рекомбинации сильно влияют обработка поверхности стенок и наличие на ней адсорбированных плёнок. Поэтому для уменьшения рекомбинации на стенках и для увеличения концентрации активно го газа в объёме при использовании активного водорода для какой-либо реакции стеклянные стенки отравляют фосфорной кислотой, водяным паром или кислородом при использовании активного хлора стенки отравляют метаном и т. д. Рекомбинация атомарных газов па стенках (особенно на металлических) зависит от температуры стенок и сильно уменьшается при её повышении. [c.682]

    АЗОТ м. 1. N (Nitrogenium), химический элемент с порядковым номером 7, включающий 8 известных изотопов с массовыми числами 12-19 (атомная масса природной смеси 14,0067) и имеющий типичные степени окисления — П1, — II, -(-I, -(-II, -bin, +rV, +V. 2. N2, простое вещество безвкусный газ без цвета и запаха, основной компонент земной атмосферы (78,1% объёма) применяется для получения аммиака, как инертный газ и др. [c.15]

    Первая попытка объяснить катодное распыление заключалась в предположении, что это явление представляет собой простое испарение вследствие нагревания всего катода в разряде [1529]. Такое объяснение пришлось отбросить, так как температура катода в тлеющем разряде для этого далеко не достаточна, а искусственное охлаждение катода не ведёт к уменьшению интенсивности распыления. Предположение о том, что катодное распыление во всех случаях имеет чисто химическую природу и является каким-то аналогом электролизу [1520, 1521], тоже было опровергнуто. Наиболее правлополобной казалась чисто механическая теория распыления [1530, 1531], допускавшая, что положительный ион непосредственно передаёт свою кинетическую энергию какому-либо атому по законам упругого удара и этот атом покидает поверхность металла, отразившись от соседних атомов. Однако последовательное проведение такого представления не даёт количественно правильных результатов. Не решили вопроса и несколько более сложная картина нескольких последовательных попаданий ионов в одно и то же место на поверхности катода, предложенная Ленгмюром, а также предположения о том, что распыление носит характер небольших взрывов в металле. Предполагали, что такие взрывы могут быть вызваны преувеличением давления газовых включений [1532] при нагреве газа или давлением ионов , проникших в металл и скопившихся в большом количестве в очень малом объёме [1533]. Отрыв более крупных частиц от металла, свидетельстиующий о локальном взрыве, действительно иногда имеет место, но представляет собой лишь побочное явление и, как правило, не может служить объяснением явления катодного распыления ввиду установленного экспериментально атомного характера распыляемых частиц. [c.469]



Абсорбция газов (1966) -- [ c.94 , c.95 ]

Основы массопередачи (1962) -- [ c.246 ]

Абсорбция газов (1976) -- [ c.69 , c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Атомные объемы



© 2025 chem21.info Реклама на сайте